5753
INFORMATIONAL
Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)
Authors: S. Turner, D. Brown
Date: January 2010
Area: sec
Working Group: smime
Stream: IETF
Obsoletes:
RFC 3278
Abstract
This document describes how to use Elliptic Curve Cryptography (ECC) public key algorithms in the Cryptographic Message Syntax (CMS). The ECC algorithms support the creation of digital signatures and the exchange of keys to encrypt or authenticate content. The definition of the algorithm processing is based on the NIST FIPS 186-3 for digital signature, NIST SP800-56A and SEC1 for key agreement, RFC 3370 and RFC 3565 for key wrap and content encryption, NIST FIPS 180-3 for message digest, SEC1 for key derivation, and RFC 2104 and RFC 4231 for message authentication code standards. This document obsoletes RFC 3278. This document is not an Internet Standards Track specification; it is published for informational purposes.
RFC 5753
INFORMATIONAL
Errata Exist
Internet Engineering Task Force (IETF) S. Turner
Request for Comments: 5753 IECA
Obsoletes: <a href="./rfc3278">3278</a> D. Brown
Category: Informational Certicom
ISSN: 2070-1721 January 2010
<span class="h1">Use of Elliptic Curve Cryptography (ECC) Algorithms</span>
<span class="h1">in Cryptographic Message Syntax (CMS)</span>
Abstract
This document describes how to use Elliptic Curve Cryptography (ECC)
public key algorithms in the Cryptographic Message Syntax (CMS). The
ECC algorithms support the creation of digital signatures and the
exchange of keys to encrypt or authenticate content. The definition
of the algorithm processing is based on the NIST FIPS 186-3 for
digital signature, NIST SP800-56A and SEC1 for key agreement, <a href="./rfc3370">RFC</a>
<a href="./rfc3370">3370</a> and <a href="./rfc3565">RFC 3565</a> for key wrap and content encryption, NIST FIPS
180-3 for message digest, SEC1 for key derivation, and <a href="./rfc2104">RFC 2104</a> and
<a href="./rfc4231">RFC 4231</a> for message authentication code standards. This document
obsoletes <a href="./rfc3278">RFC 3278</a>.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc5753">http://www.rfc-editor.org/info/rfc5753</a>.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
<span class="grey">Turner & Brown Informational [Page 1]</span>
<span id="page-2" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Requirements Terminology ...................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. SignedData Using ECC ............................................<a href="#page-3">3</a>
<a href="#section-2.1">2.1</a>. SignedData Using ECDSA .....................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. EnvelopedData Using ECC Algorithms ..............................<a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. EnvelopedData Using (ephemeral-static) ECDH ................<a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. EnvelopedData Using 1-Pass ECMQV ...........................<a href="#page-8">8</a>
<a href="#section-4">4</a>. AuthenticatedData and AuthEnvelopedData Using ECC ..............<a href="#page-11">11</a>
<a href="#section-4.1">4.1</a>. AuthenticatedData Using 1-Pass ECMQV ......................<a href="#page-11">11</a>
<a href="#section-4.2">4.2</a>. AuthEnvelopedData Using 1-Pass ECMQV ......................<a href="#page-12">12</a>
<a href="#section-5">5</a>. Certificates Using ECC .........................................<a href="#page-13">13</a>
<a href="#section-6">6</a>. SMIMECapabilities Attribute and ECC ............................<a href="#page-13">13</a>
<a href="#section-7">7</a>. ASN.1 Syntax ...................................................<a href="#page-21">21</a>
<a href="#section-7.1">7.1</a>. Algorithm Identifiers .....................................<a href="#page-21">21</a>
<a href="#section-7.2">7.2</a>. Other Syntax ..............................................<a href="#page-24">24</a>
<a href="#section-8">8</a>. Recommended Algorithms and Elliptic Curves .....................<a href="#page-26">26</a>
<a href="#section-9">9</a>. Security Considerations ........................................<a href="#page-28">28</a>
<a href="#section-10">10</a>. IANA Considerations ...........................................<a href="#page-33">33</a>
<a href="#section-11">11</a>. References ....................................................<a href="#page-33">33</a>
<a href="#section-11.1">11.1</a>. Normative References .....................................<a href="#page-33">33</a>
<a href="#section-11.2">11.2</a>. Informative References ...................................<a href="#page-35">35</a>
<a href="#appendix-A">Appendix A</a>. ASN.1 Modules.........................................<a href="#page-37">37</a>
<a href="#appendix-A.1">A.1</a>. 1988 ASN.1 Module.........................................<a href="#page-37">37</a>
<a href="#appendix-A.2">A.2</a>. 2004 ASN.1 Module.........................................<a href="#page-45">45</a>
<a href="#appendix-B">Appendix B</a>. Changes since <a href="./rfc3278">RFC 3278</a>.................................<a href="#page-59">59</a>
Acknowledgements...................................................<a href="#page-61">61</a>
<span class="grey">Turner & Brown Informational [Page 2]</span>
<span id="page-3" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Cryptographic Message Syntax (CMS) is cryptographic algorithm
independent. This specification defines a profile for the use of
Elliptic Curve Cryptography (ECC) public key algorithms in the CMS.
The ECC algorithms are incorporated into the following CMS content
types:
- 'SignedData' to support ECC-based digital signature methods
(ECDSA) to sign content;
- 'EnvelopedData' to support ECC-based public key agreement methods
(ECDH and ECMQV) to generate pairwise key-encryption keys to
encrypt content-encryption keys used for content encryption;
- 'AuthenticatedData' to support ECC-based public key agreement
methods (ECMQV) to generate pairwise key-encryption keys to
encrypt message-authentication keys used for content
authentication and integrity; and
- 'AuthEnvelopedData' to support ECC-based public key agreement
methods (ECMQV) to generate pairwise key-encryption keys to
encrypt message-authentication and content-encryption keys used
for content authentication, integrity, and encryption.
Certification of EC public keys is also described to provide public
key distribution in support of the specified techniques.
The document will obsolete [<a href="#ref-CMS-ECC" title=""Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)"">CMS-ECC</a>]. The technical changes
performed since <a href="./rfc3278">RFC 3278</a> are detailed in <a href="#appendix-B">Appendix B</a>.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="#ref-MUST" title=""Key words for use in RFCs to Indicate Requirement Levels"">MUST</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. SignedData Using ECC</span>
This section describes how to use ECC algorithms with the CMS
SignedData format to sign data.
<span class="grey">Turner & Brown Informational [Page 3]</span>
<span id="page-4" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. SignedData Using ECDSA</span>
This section describes how to use the Elliptic Curve Digital
Signature Algorithm (ECDSA) with SignedData. ECDSA is specified in
[<a href="#ref-FIPS186-3" title=" FIPS Publication 186-3: Digital Signature Standard">FIPS186-3</a>]. The method is the elliptic curve analog of the Digital
Signature Algorithm (DSA) [<a href="#ref-FIPS186-3" title=" FIPS Publication 186-3: Digital Signature Standard">FIPS186-3</a>]. ECDSA is used with the Secure
Hash Algorithm (SHA) [<a href="#ref-FIPS180-3" title=" FIPS Publication 180-3: Secure Hash Standard">FIPS180-3</a>].
In an implementation that uses ECDSA with CMS SignedData, the
following techniques and formats MUST be used.
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>. Fields of the SignedData</span>
When using ECDSA with SignedData, the fields of SignerInfo are as in
[<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>], but with the following restrictions:
- digestAlgorithm MUST contain the algorithm identifier of the hash
algorithm (see <a href="#section-7.1.1">Section 7.1.1</a>), which MUST be one of the following:
id-sha1, id-sha224, id-sha256, id-sha384, or id-sha512.
- signatureAlgorithm contains the signature algorithm identifier
(see <a href="#section-7.1.3">Section 7.1.3</a>): ecdsa-with-SHA1, ecdsa-with-SHA224, ecdsa-
with-SHA256, ecdsa-with-SHA384, or ecdsa-with-SHA512. The hash
algorithm identified in the name of the signature algorithm MUST
be the same as the digestAlgorithm (e.g., digestAlgorithm is id-
sha256 therefore signatureAlgorithm is ecdsa-with-SHA256).
- signature MUST contain the DER encoding (as an octet string) of a
value of the ASN.1 type ECDSA-Sig-Value (see <a href="#section-7.2">Section 7.2</a>).
When using ECDSA, the SignedData certificates field MAY include the
certificate(s) for the EC public key(s) used in the generation of the
ECDSA signatures in SignedData. ECC certificates are discussed in
<a href="#section-5">Section 5</a>.
<span class="h4"><a class="selflink" id="section-2.1.2" href="#section-2.1.2">2.1.2</a>. Actions of the Sending Agent</span>
When using ECDSA with SignedData, the sending agent uses the message
digest calculation process and signature generation process for
SignedData that are specified in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]. To sign data, the sending
agent uses the signature method specified in [<a href="#ref-FIPS186-3" title=" FIPS Publication 186-3: Digital Signature Standard">FIPS186-3</a>].
The sending agent encodes the resulting signature using the ECDSA-
Sig-Value syntax (see <a href="#section-7.2">Section 7.2</a>) and places it in the SignerInfo
signature field.
<span class="grey">Turner & Brown Informational [Page 4]</span>
<span id="page-5" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h4"><a class="selflink" id="section-2.1.3" href="#section-2.1.3">2.1.3</a>. Actions of the Receiving Agent</span>
When using ECDSA with SignedData, the receiving agent uses the
message digest calculation process and signature verification process
for SignedData that are specified in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]. To verify SignedData,
the receiving agent uses the signature verification method specified
in [<a href="#ref-FIPS186-3" title=" FIPS Publication 186-3: Digital Signature Standard">FIPS186-3</a>].
In order to verify the signature, the receiving agent retrieves the
integers r and s from the SignerInfo signature field of the received
message.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. EnvelopedData Using ECC Algorithms</span>
This section describes how to use ECC algorithms with the CMS
EnvelopedData format.
This document does not specify the static-static ECDH, method C(0,2,
ECC CDH) from [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>]. Static-static ECDH is analogous to
static-static DH, which is specified in [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>]. Ephemeral-static
ECDH and 1-Pass ECMQV were specified because they provide better
security due to the originator's ephemeral contribution to the key
agreement scheme.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. EnvelopedData Using (ephemeral-static) ECDH</span>
This section describes how to use the ephemeral-static Elliptic Curve
Diffie-Hellman (ECDH) key agreement algorithm with EnvelopedData.
This algorithm has two variations:
- 'Standard' ECDH, described as the 'Elliptic Curve Diffie-Hellman
Scheme' with the 'Elliptic Curve Diffie-Hellman Primitive' in
[<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>], and
- 'Co-factor' ECDH, described as the 'One-Pass Diffie-Hellman scheme'
(method C(1, 1, ECC CDH)) in [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>].
Both variations of ephemeral-static ECDH are elliptic curve analogs
of the ephemeral-static Diffie-Hellman key agreement algorithm
specified jointly in the documents [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>] and [<a href="#ref-CMS-DH" title=""Diffie-Hellman Key Agreement Method"">CMS-DH</a>].
If an implementation uses ECDH with CMS EnvelopedData, then the
following techniques and formats MUST be used.
The fields of EnvelopedData are as in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]; as ECDH is a key
agreement algorithm, the RecipientInfo kari choice is used.
<span class="grey">Turner & Brown Informational [Page 5]</span>
<span id="page-6" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Fields of KeyAgreeRecipientInfo</span>
When using ephemeral-static ECDH with EnvelopedData, the fields of
KeyAgreeRecipientInfo are as follows:
- version MUST be 3.
- originator MUST be the alternative originatorKey. The
originatorKey algorithm field MUST contain the id-ecPublicKey
object identifier (see <a href="#section-7.1.2">Section 7.1.2</a>). The parameters associated
with id-ecPublicKey MUST be absent, ECParameters, or NULL. The
parameters associated with id-ecPublicKey SHOULD be absent or
ECParameters, and NULL is allowed to support legacy
implementations. The previous version of this document required
NULL to be present. If the parameters are ECParameters, then they
MUST be namedCurve. The originatorKey publicKey field MUST
contain the DER encoding of the value of the ASN.1 type ECPoint
(see <a href="#section-7.2">Section 7.2</a>), which represents the sending agent's ephemeral
EC public key. The ECPoint in uncompressed form MUST be
supported.
- ukm MAY be present or absent. However, message originators SHOULD
include the ukm. As specified in <a href="./rfc3852">RFC 3852</a> [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>], implementations
MUST support ukm message recipient processing, so interoperability
is not a concern if the ukm is present or absent. The ukm is
placed in the entityUInfo field of the ECC-CMS-SharedInfo
structure. When present, the ukm is used to ensure that a
different key-encryption key is generated, even when the ephemeral
private key is improperly used more than once, by using the ECC-
CMS-SharedInfo as an input to the key derivation function (see
<a href="#section-7.2">Section 7.2</a>).
- keyEncryptionAlgorithm MUST contain the object identifier of the
key-encryption algorithm, which in this case is a key agreement
algorithm (see <a href="#section-7.1.4">Section 7.1.4</a>). The parameters field contains
KeyWrapAlgorithm. The KeyWrapAlgorithm is the algorithm
identifier that indicates the symmetric encryption algorithm used
to encrypt the content-encryption key (CEK) with the key-
encryption key (KEK) and any associated parameters (see <a href="#section-7.1.5">Section</a>
<a href="#section-7.1.5">7.1.5</a>). Algorithm requirements are found in <a href="#section-8">Section 8</a>.
- recipientEncryptedKeys contains an identifier and an encrypted key
for each recipient. The RecipientEncryptedKey
KeyAgreeRecipientIdentifier MUST contain either the
issuerAndSerialNumber identifying the recipient's certificate or
the RecipientKeyIdentifier containing the subject key identifier
from the recipient's certificate. In both cases, the recipient's
certificate contains the recipient's static ECDH public key.
<span class="grey">Turner & Brown Informational [Page 6]</span>
<span id="page-7" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
RecipientEncryptedKey EncryptedKey MUST contain the content-
encryption key encrypted with the ephemeral-static, ECDH-generated
pairwise key-encryption key using the algorithm specified by the
KeyWrapAlgorithm.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Actions of the Sending Agent</span>
When using ephemeral-static ECDH with EnvelopedData, the sending
agent first obtains the recipient's EC public key and domain
parameters (e.g., from the recipient's certificate). The sending
agent then performs one of the two ECDH variations mentioned above:
- If the value of keyEncryptionAlgorithm indicates the use of
'standard' Diffie-Hellman, then the sending agent performs the
'Elliptic Curve Diffie-Hellman Scheme' with the 'Elliptic Curve
Diffie-Hellman Primitive' in [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>].
- If the value of keyEncryptionAlgorithm indicates the use of 'co-
factor' Diffie-Hellman, then the sending agent performs the 'One-
Pass Diffie-Hellman scheme' (method C(1, 1, ECC CDH)) in
[<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>].
In both of these cases, the sending agent uses the KDF defined in
Section 3.6.1 of [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>] with the hash algorithm identified by the
value of keyEncryptionAlgorithm. As a result, the sending agent
obtains:
- an ephemeral public key, which is represented as a value of the
type ECPoint (see <a href="#section-7.2">Section 7.2</a>), encapsulated in a bit string and
placed in the KeyAgreeRecipientInfo originator originatorKey
publicKey field, and
- a shared secret bit string "K", which is used as the pairwise key-
encryption key for that recipient, as specified in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
In a single message, if there are multiple layers for a recipient,
then the ephemeral public key can be reused by the originator for
that recipient in each of the different layers.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Actions of the Receiving Agent</span>
When using ephemeral-static ECDH with EnvelopedData, the receiving
agent determines the bit string "SharedInfo", which is the DER
encoding of ECC-CMS-SharedInfo (see <a href="#section-7.2">Section 7.2</a>), and the integer
"keydatalen" from the key size, in bits, of the KeyWrapAlgorithm.
The receiving agent retrieves the ephemeral EC public key from the
bit string KeyAgreeRecipientInfo originator, with a value of the type
ECPoint (see <a href="#section-7.2">Section 7.2</a>) encapsulated as a bit string, and if
<span class="grey">Turner & Brown Informational [Page 7]</span>
<span id="page-8" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
present, originally supplied additional user key material from the
ukm field. The receiving agent then performs one of the two ECDH
variations mentioned above:
- If the value of keyEncryptionAlgorithm indicates the use of
'standard' Diffie-Hellman, then the receiving agent performs the
'Elliptic Curve Diffie-Hellman Scheme' with the 'Elliptic Curve
Diffie-Hellman Primitive' in [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>].
- If the value of keyEncryptionAlgorithm indicates the use of 'co-
factor' Diffie-Hellman, then the receiving agent performs the 'One-
Pass Diffie-Hellman scheme' (method C(1, 1, ECC CDH)) in
[<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>].
In both of these cases, the receiving agent uses the KDF defined in
Section 3.6.1 of [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>] with the hash algorithm identified by the
value of keyEncryptionAlgorithm. As a result, the receiving agent
obtains a shared secret bit string "K", which is used as the pairwise
key-encryption key to unwrap the CEK.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. EnvelopedData Using 1-Pass ECMQV</span>
This section describes how to use the 1-Pass Elliptic Curve Menezes-
Qu-Vanstone (ECMQV) key agreement algorithm with EnvelopedData,
method C(1, 2, ECC MQV) from [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>]. Like the KEA algorithm
[<a href="#ref-CMS-KEA" title=""Use of the KEA and SKIPJACK Algorithms in CMS"">CMS-KEA</a>], 1-Pass ECMQV uses three key pairs: an ephemeral key pair,
a static key pair of the sending agent, and a static key pair of the
receiving agent. Using an algorithm with the sender static key pair
allows for knowledge of the message creator; this means that
authentication can, in some circumstances, be obtained for
AuthEnvelopedData and AuthenticatedData. This means that 1-Pass
ECMQV can be a common algorithm for EnvelopedData, AuthenticatedData,
and AuthEnvelopedData, while ECDH can only be used in EnvelopedData.
If an implementation uses 1-Pass ECMQV with CMS EnvelopedData, then
the following techniques and formats MUST be used.
The fields of EnvelopedData are as in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]; as 1-Pass ECMQV is a key
agreement algorithm, the RecipientInfo kari choice is used. When
using 1-Pass ECMQV, the EnvelopedData originatorInfo field MAY
include the certificate(s) for the EC public key(s) used in the
formation of the pairwise key. ECC certificates are discussed in
<a href="#section-5">Section 5</a>.
<span class="grey">Turner & Brown Informational [Page 8]</span>
<span id="page-9" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Fields of KeyAgreeRecipientInfo</span>
When using 1-Pass ECMQV with EnvelopedData, the fields of
KeyAgreeRecipientInfo are as follows:
- version MUST be 3.
- originator identifies the static EC public key of the sender. It
SHOULD be one of the alternatives, issuerAndSerialNumber or
subjectKeyIdentifier, and point to one of the sending agent's
certificates.
- ukm MUST be present. The ukm field is an octet string that MUST
contain the DER encoding of the type MQVuserKeyingMaterial (see
<a href="#section-7.2">Section 7.2</a>). The MQVuserKeyingMaterial ephemeralPublicKey
algorithm field MUST contain the id-ecPublicKey object identifier
(see <a href="#section-7.1.2">Section 7.1.2</a>). The parameters associated with id-
ecPublicKey MUST be absent, ECParameters, or NULL. The parameters
associated with id-ecPublicKey SHOULD be absent or ECParameters,
as NULL is allowed to support legacy implementations. The
previous version of this document required NULL to be present. If
the parameters are ECParameters, then they MUST be namedCurve.
The MQVuserKeyingMaterial ephemeralPublicKey publicKey field MUST
contain the DER encoding of the ASN.1 type ECPoint (see <a href="#section-7.2">Section</a>
<a href="#section-7.2">7.2</a>) representing the sending agent's ephemeral EC public key.
The MQVuserKeyingMaterial addedukm field, if present, contains
additional user keying material from the sending agent.
- keyEncryptionAlgorithm MUST contain the object identifier of the
key-encryption algorithm, which in this case is a key agreement
algorithm (see <a href="#section-7.1.4">Section 7.1.4</a>). The parameters field contains
KeyWrapAlgorithm. The KeyWrapAlgorithm indicates the symmetric
encryption algorithm used to encrypt the CEK with the KEK
generated using the 1-Pass ECMQV algorithm and any associated
parameters (see <a href="#section-7.1.5">Section 7.1.5</a>). Algorithm requirements are found
in <a href="#section-8">Section 8</a>.
- recipientEncryptedKeys contains an identifier and an encrypted key
for each recipient. The RecipientEncryptedKey
KeyAgreeRecipientIdentifier MUST contain either the
issuerAndSerialNumber identifying the recipient's certificate or
the RecipientKeyIdentifier containing the subject key identifier
from the recipient's certificate. In both cases, the recipient's
certificate contains the recipient's static ECMQV public key.
RecipientEncryptedKey EncryptedKey MUST contain the content-
encryption key encrypted with the 1-Pass ECMQV-generated pairwise
key-encryption key using the algorithm specified by the
KeyWrapAlgorithm.
<span class="grey">Turner & Brown Informational [Page 9]</span>
<span id="page-10" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Actions of the Sending Agent</span>
When using 1-Pass ECMQV with EnvelopedData, the sending agent first
obtains the recipient's EC public key and domain parameters (e.g.,
from the recipient's certificate), and checks that the domain
parameters are the same as the sender's domain parameters. The
sending agent then determines an integer "keydatalen", which is the
KeyWrapAlgorithm symmetric key size in bits, and also a bit string
"SharedInfo", which is the DER encoding of ECC-CMS-SharedInfo (see
<a href="#section-7.2">Section 7.2</a>). The sending agent then performs the key deployment and
key agreement operations of the Elliptic Curve MQV Scheme specified
in [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>], but uses the KDF defined in Section 3.6.1 of [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>].
As a result, the sending agent obtains:
- an ephemeral public key, which is represented as a value of type
ECPoint (see <a href="#section-7.2">Section 7.2</a>), encapsulated in a bit string, placed in
an MQVuserKeyingMaterial ephemeralPublicKey publicKey field (see
<a href="#section-7.2">Section 7.2</a>), and
- a shared secret bit string "K", which is used as the pairwise key-
encryption key for that recipient, as specified in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
In a single message, if there are multiple layers for a recipient,
then the ephemeral public key can be reused by the originator for
that recipient in each of the different layers.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Actions of the Receiving Agent</span>
When using 1-Pass ECMQV with EnvelopedData, the receiving agent
determines the bit string "SharedInfo", which is the DER encoding of
ECC-CMS-SharedInfo (see <a href="#section-7.2">Section 7.2</a>), and the integer "keydatalen"
from the key size, in bits, of the KeyWrapAlgorithm. The receiving
agent then retrieves the static and ephemeral EC public keys of the
originator, from the originator and ukm fields as described in
<a href="#section-3.2.1">Section 3.2.1</a>, and its static EC public key identified in the rid
field and checks that the originator's domain parameters are the same
as the recipient's domain parameters. The receiving agent then
performs the key agreement operation of the Elliptic Curve MQV Scheme
[<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>], but uses the KDF defined in Section 3.6.1 of [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>]. As
a result, the receiving agent obtains a shared secret bit string "K",
which is used as the pairwise key-encryption key to unwrap the CEK.
<span class="grey">Turner & Brown Informational [Page 10]</span>
<span id="page-11" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. AuthenticatedData and AuthEnvelopedData Using ECC</span>
This section describes how to use ECC algorithms with the CMS
AuthenticatedData format. AuthenticatedData lacks non-repudiation,
and so in some instances is preferable to SignedData. (For example,
the sending agent might not want the message to be authenticated when
forwarded.)
This section also describes how to use ECC algorithms with the CMS
AuthEnvelopedData format [<a href="#ref-CMS-AUTHENV" title=""Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type"">CMS-AUTHENV</a>]. AuthEnvelopedData supports
authentication and encryption, and in some instances is preferable to
signing and then encrypting data.
For both AuthenticatedData and AuthEnvelopedData, data origin
authentication with 1-Pass ECMQV can only be provided when there is
one and only one recipient. When there are multiple recipients, an
attack is possible where one recipient modifies the content without
other recipients noticing [<a href="#ref-BON" title=""The Security of Multicast MAC"">BON</a>]. A sending agent who is concerned
with such an attack SHOULD use a separate AuthenticatedData or
AuthEnvelopedData for each recipient.
Using an algorithm with the sender static key pair allows for
knowledge of the message creator; this means that authentication can,
in some circumstances, be obtained for AuthEnvelopedData and
AuthenticatedData. This means that 1-Pass ECMQV can be a common
algorithm for EnvelopedData, AuthenticatedData, and AuthEnvelopedData
while ECDH can only be used in EnvelopedData.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. AuthenticatedData Using 1-Pass ECMQV</span>
This section describes how to use the 1-Pass ECMQV key agreement
algorithm with AuthenticatedData. ECMQV is method C(1, 2, ECC MQV)
from [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>].
When using ECMQV with AuthenticatedData, the fields of
AuthenticatedData are as in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>], but with the following
restrictions:
- macAlgorithm MUST contain the algorithm identifier of the message
authentication code (MAC) algorithm (see <a href="#section-7.1.7">Section 7.1.7</a>), which MUST
be one of the following: hmac-SHA1, id-hmacWITHSHA224, id-
hmacWITHSHA256, id-hmacWITHSHA384, or id-hmacWITHSHA512.
- digestAlgorithm MUST contain the algorithm identifier of the hash
algorithm (see <a href="#section-7.1.1">Section 7.1.1</a>), which MUST be one of the following:
id-sha1, id-sha224, id-sha256, id-sha384, or id-sha512.
<span class="grey">Turner & Brown Informational [Page 11]</span>
<span id="page-12" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
As 1-Pass ECMQV is a key agreement algorithm, the RecipientInfo kari
choice is used in the AuthenticatedData. When using 1-Pass ECMQV,
the AuthenticatedData originatorInfo field MAY include the
certificate(s) for the EC public key(s) used in the formation of the
pairwise key. ECC certificates are discussed in <a href="#section-5">Section 5</a>.
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. Fields of the KeyAgreeRecipientInfo</span>
The AuthenticatedData KeyAgreeRecipientInfo fields are used in the
same manner as the fields for the corresponding EnvelopedData
KeyAgreeRecipientInfo fields of <a href="#section-3.2.1">Section 3.2.1</a> of this document.
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. Actions of the Sending Agent</span>
The sending agent uses the same actions as for EnvelopedData with
1-Pass ECMQV, as specified in <a href="#section-3.2.2">Section 3.2.2</a> of this document.
In a single message, if there are multiple layers for a recipient,
then the ephemeral public key can be reused by the originator for
that recipient in each of the different layers.
<span class="h4"><a class="selflink" id="section-4.1.3" href="#section-4.1.3">4.1.3</a>. Actions of the Receiving Agent</span>
The receiving agent uses the same actions as for EnvelopedData with
1-Pass ECMQV, as specified in <a href="#section-3.2.3">Section 3.2.3</a> of this document.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. AuthEnvelopedData Using 1-Pass ECMQV</span>
This section describes how to use the 1-Pass ECMQV key agreement
algorithm with AuthEnvelopedData. ECMQV is method C(1, 2, ECC MQV)
from [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>].
When using ECMQV with AuthEnvelopedData, the fields of
AuthEnvelopedData are as in [<a href="#ref-CMS-AUTHENV" title=""Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type"">CMS-AUTHENV</a>].
As 1-Pass ECMQV is a key agreement algorithm, the RecipientInfo kari
choice is used. When using 1-Pass ECMQV, the AuthEnvelopedData
originatorInfo field MAY include the certificate(s) for the EC public
key used in the formation of the pairwise key. ECC certificates are
discussed in <a href="#section-5">Section 5</a>.
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. Fields of the KeyAgreeRecipientInfo</span>
The AuthEnvelopedData KeyAgreeRecipientInfo fields are used in the
same manner as the fields for the corresponding EnvelopedData
KeyAgreeRecipientInfo fields of <a href="#section-3.2.1">Section 3.2.1</a> of this document.
<span class="grey">Turner & Brown Informational [Page 12]</span>
<span id="page-13" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Actions of the Sending Agent</span>
The sending agent uses the same actions as for EnvelopedData with
1-Pass ECMQV, as specified in <a href="#section-3.2.2">Section 3.2.2</a> of this document.
In a single message, if there are multiple layers for a recipient,
then the ephemeral public key can be reused by the originator for
that recipient in each of the different layers.
<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a>. Actions of the Receiving Agent</span>
The receiving agent uses the same actions as for EnvelopedData with
1-Pass ECMQV, as specified in <a href="#section-3.2.3">Section 3.2.3</a> of this document.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Certificates Using ECC</span>
Internet X.509 certificates [<a href="#ref-PKI" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PKI</a>] can be used in conjunction with
this specification to distribute agents' public keys. The use of ECC
algorithms and keys within X.509 certificates is specified in
[<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. SMIMECapabilities Attribute and ECC</span>
A sending agent MAY announce to receiving agents that it supports one
or more of the ECC algorithms specified in this document by using the
SMIMECapabilities signed attribute [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">MSG</a>] in either a signed message
or a certificate [<a href="#ref-CERTCAP" title=""X.509 Certificate Extension for Secure/Multipurpose Internet Mail Extensions (S/MIME) Capabilities"">CERTCAP</a>].
The SMIMECapabilities attribute value indicates support for one of
the ECDSA signature algorithms in a SEQUENCE with the capabilityID
field containing the object identifier ecdsa-with-SHA1 with NULL
parameters and ecdsa-with-SHA* (where * is 224, 256, 384, or 512)
with absent parameters. The DER encodings are:
ecdsa-with-SHA1: 30 0b 06 07 2a 86 48 ce 3d 04 01 05 00
ecdsa-with-SHA224: 30 0a 06 08 2a 86 48 ce 3d 04 03 01
ecdsa-with-SHA256: 30 0a 06 08 2a 86 48 ce 3d 04 03 02
ecdsa-with-SHA384: 30 0a 06 08 2a 86 48 ce 3d 04 03 03
ecdsa-with-SHA512: 30 0a 06 08 2a 86 48 ce 3d 04 03 04
NOTE: The SMIMECapabilities attribute indicates that parameters for
ECDSA with SHA-1 are NULL; however, the parameters are absent when
used to generate a digital signature.
<span class="grey">Turner & Brown Informational [Page 13]</span>
<span id="page-14" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
The SMIMECapabilities attribute value indicates support for
a) the standard ECDH key agreement algorithm,
b) the cofactor ECDH key agreement algorithm, or
c) the 1-Pass ECMQV key agreement algorithm and
is a SEQUENCE with the capabilityID field containing the object
identifier
a) dhSinglePass-stdDH-sha*kdf-scheme,
b) dhSinglePass-cofactorDH-sha*kdf-scheme, or
c) mqvSinglePass-sha*kdf-scheme
respectively (where * is 1, 224, 256, 384, or 512) with the
parameters present. The parameters indicate the supported key-
encryption algorithm with the KeyWrapAlgorithm algorithm identifier.
The DER encodings that indicate capabilities are as follows (KA is
key agreement, KDF is key derivation function, and Wrap is key wrap
algorithm):
KA=ECDH standard KDF=SHA-1 Wrap=Triple-DES
30 1c 06 09 2b 81 05 10 86 48 3f 00 02 30 0f 06 0b 2a 86 48 86
f7 0d 01 09 10 03 06 05 00
KA=ECDH standard KDF=SHA-224 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0B 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECDH standard KDF=SHA-256 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0B 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECDH standard KDF=SHA-384 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0B 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECDH standard KDF=SHA-512 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0B 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
<span class="grey">Turner & Brown Informational [Page 14]</span>
<span id="page-15" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECDH standard KDF=SHA-1 Wrap=AES-128
30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
65 03 04 01 05
KA=ECDH standard KDF=SHA-224 Wrap=AES-128
30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH standard KDF=SHA-256 Wrap=AES-128
30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH standard KDF=SHA-384 Wrap=AES-128
30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH standard KDF=SHA-512 Wrap=AES-128
30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH standard KDF=SHA-1 Wrap=AES-192
30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
65 03 04 01 19
KA=ECDH standard KDF=SHA-224 Wrap=AES-192
30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECDH standard KDF=SHA-256 Wrap=AES-192
30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECDH standard KDF=SHA-384 Wrap=AES-192
30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
01 19
<span class="grey">Turner & Brown Informational [Page 15]</span>
<span id="page-16" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECDH standard KDF=SHA-512 Wrap=AES-192
30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECDH standard KDF=SHA-1 Wrap=AES-256
30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
65 03 04 01 2D
KA=ECDH standard KDF=SHA-224 Wrap=AES-256
30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECDH standard KDF=SHA-256 Wrap=AES-256
30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECDH standard KDF=SHA-384 Wrap=AES-256
30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
01 2D 05 00
KA=ECDH standard KDF=SHA-512 Wrap=AES-256
30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECDH cofactor KDF=SHA-1 Wrap=Triple-DES
30 1c 06 09 2b 81 05 10 86 48 3f 00 03 30 0f 06 0b 2a 86 48 86
f7 0d 01 09 10 03 06 05 00
KA=ECDH cofactor KDF=SHA-224 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0E 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECDH cofactor KDF=SHA-256 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0E 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
<span class="grey">Turner & Brown Informational [Page 16]</span>
<span id="page-17" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECDH cofactor KDF=SHA-384 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0E 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECDH cofactor KDF=SHA-512 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0E 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECDH cofactor KDF=SHA-1 Wrap=AES-128
30 18 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
65 03 04 01 05
KA=ECDH cofactor KDF=SHA-224 Wrap=AES-128
30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH cofactor KDF=SHA-256 Wrap=AES-128
30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH cofactor KDF=SHA-384 Wrap=AES-128
30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH cofactor KDF=SHA-512 Wrap=AES-128
30 17 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECDH cofactor KDF=SHA-1 Wrap=AES-192
30 18 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
65 03 04 01 19
KA=ECDH cofactor KDF=SHA-224 Wrap=AES-192
30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
01 19
<span class="grey">Turner & Brown Informational [Page 17]</span>
<span id="page-18" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECDH cofactor KDF=SHA-256 Wrap=AES-192
30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECDH cofactor KDF=SHA-384 Wrap=AES-192
30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECDH cofactor KDF=SHA-512 Wrap=AES-192
30 15 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECDH cofactor KDF=SHA-1 Wrap=AES-256
30 15 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
65 03 04 01 2D
KA=ECDH cofactor KDF=SHA-224 Wrap=AES-256
30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECDH cofactor KDF=SHA-256 Wrap=AES-256
30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECDH cofactor KDF=SHA-384 Wrap=AES-256
30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECDH cofactor KDF=SHA-512 Wrap=AES-256
30 15 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECMQV 1-Pass KDF=SHA-1 Wrap=Triple-DES
30 1c 06 09 2b 81 05 10 86 48 3f 00 10 30 0f 06 0b 2a 86 48 86
f7 0d 01 09 10 03 06 05 00
<span class="grey">Turner & Brown Informational [Page 18]</span>
<span id="page-19" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECMQV 1-Pass KDF=SHA-224 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0F 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECMQV 1-Pass KDF=SHA-256 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0F 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECMQV 1-Pass KDF=SHA-384 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0F 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECMQV 1-Pass KDF=SHA-512 Wrap=Triple-DES
30 17 06 06 2b 81 04 01 0F 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
09 10 03 06
KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-128
30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
65 03 04 01 05
KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-128
30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-128
30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-128
30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
01 05
KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-128
30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
01 05
<span class="grey">Turner & Brown Informational [Page 19]</span>
<span id="page-20" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-192
30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
65 03 04 01 19
KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-192
30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-192
30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-192
30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-192
30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
01 19
KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-256
30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
65 03 04 01 2D
KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-256
30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-256
30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
01 2D
KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-256
30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
01 2D
<span class="grey">Turner & Brown Informational [Page 20]</span>
<span id="page-21" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-256
30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
01 2D
NOTE: The S/MIME Capabilities for the supported AES content-
encryption key sizes are defined in [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>].
NOTE: The S/MIME Capabilities for the supported MAC algorithms are
defined in [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>].
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. ASN.1 Syntax</span>
The ASN.1 syntax [<a href="#ref-X.680">X.680</a>], [<a href="#ref-X.681">X.681</a>], [<a href="#ref-X.682">X.682</a>], [<a href="#ref-X.683">X.683</a>] used in this
document is gathered in this section for reference purposes.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Algorithm Identifiers</span>
This section provides the object identifiers for the algorithms used
in this document along with any associated parameters.
<span class="h4"><a class="selflink" id="section-7.1.1" href="#section-7.1.1">7.1.1</a>. Digest Algorithms</span>
Digest algorithm object identifiers are used in the SignedData
digestAlgorithms and digestAlgorithm fields and the AuthenticatedData
digestAlgorithm field. The digest algorithms used in this document
are SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. The object
identifiers and parameters associated with these algorithms are found
in [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>] and [<a href="#ref-CMS-SHA2" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">CMS-SHA2</a>].
<span class="h4"><a class="selflink" id="section-7.1.2" href="#section-7.1.2">7.1.2</a>. Originator Public Key</span>
The KeyAgreeRecipientInfo originator field uses the following object
identifier to indicate an elliptic curve public key:
id-ecPublicKey OBJECT IDENTIFIER ::= {
ansi-x9-62 keyType(2) 1 }
where
ansi-x9-62 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) 10045 }
When the object identifier id-ecPublicKey is used here with an
algorithm identifier, the associated parameters MUST be either absent
or ECParameters. Implementations MUST accept id-ecPublicKey with
absent and ECParameters parameters. If ECParameters is present, its
<span class="grey">Turner & Brown Informational [Page 21]</span>
<span id="page-22" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
value MUST match the recipient's ECParameters. Implementations
SHOULD generate absent parameters for the id-ecPublicKey object
identifier in the KeyAgreeRecipientInfo originator field.
[<a id="ref-CMS-ECC">CMS-ECC</a>] indicated the parameters were NULL. Support for this
legacy form is OPTIONAL.
<span class="h4"><a class="selflink" id="section-7.1.3" href="#section-7.1.3">7.1.3</a>. Signature Algorithms</span>
Signature algorithm identifiers are used in the SignedData
signatureAlgorithm and signature fields. The signature algorithms
used in this document are ECDSA with SHA-1, ECDSA with SHA-224, ECDSA
with SHA-256, ECDSA with SHA-384, and ECDSA with SHA-512. The object
identifiers and parameters associated with these algorithms are found
in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>].
[<a id="ref-CMS-ECC">CMS-ECC</a>] indicated the parameters were NULL. Support for this
legacy form is OPTIONAL.
<span class="h4"><a class="selflink" id="section-7.1.4" href="#section-7.1.4">7.1.4</a>. Key Agreement Algorithms</span>
Key agreement algorithms are used in EnvelopedData,
AuthenticatedData, and AuthEnvelopedData in the KeyAgreeRecipientInfo
keyEncryptionAlgorithm field. The following object identifiers
indicate the key agreement algorithms used in this document
[<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>], [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>]:
dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 2 }
dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 0 }
dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 1 }
dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 2 }
dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 3 }
dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 3 }
dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 0 }
<span class="grey">Turner & Brown Informational [Page 22]</span>
<span id="page-23" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 1 }
dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 2 }
dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 3 }
mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 16 }
mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 0 }
mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 1 }
mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 2 }
mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 3 }
where
x9-63-scheme OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) tc68(133) country(16)
x9(840) x9-63(63) schemes(0) }
and
secg-scheme OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) certicom(132) schemes(1) }
When the object identifiers are used here within an algorithm
identifier, the associated parameters field contains KeyWrapAlgorithm
to indicate the key wrap algorithm and any associated parameters.
<span class="h4"><a class="selflink" id="section-7.1.5" href="#section-7.1.5">7.1.5</a>. Key Wrap Algorithms</span>
Key wrap algorithms are used as part of the parameters in the key
agreement algorithm. The key wrap algorithms used in this document
are Triple-DES, AES-128, AES-192, and AES-256. The object
identifiers and parameters for these algorithms are found in
[<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>] and [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>].
<span class="grey">Turner & Brown Informational [Page 23]</span>
<span id="page-24" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h4"><a class="selflink" id="section-7.1.6" href="#section-7.1.6">7.1.6</a>. Content Encryption Algorithms</span>
Content encryption algorithms are used in EnvelopedData and
AuthEnvelopedData in the EncryptedContentInfo
contentEncryptionAlgorithm field. The content encryption algorithms
used with EnvelopedData in this document are 3-Key Triple DES in CBC
mode, AES-128 in CBC mode, AES-192 in CBC mode, and AES-256 in CBC
mode. The object identifiers and parameters associated with these
algorithms are found in [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>] and [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>]. The content
encryption algorithms used with AuthEnvelopedData in this document
are AES-128 in CCM mode, AES-192 in CCM mode, AES-256 in CCM mode,
AES-128 in GCM mode, AES-192 in GCM mode, and AES-256 in GCM mode.
The object identifiers and parameters associated with these
algorithms are found in [<a href="#ref-CMS-AESCG" title=""Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syntax (CMS)"">CMS-AESCG</a>].
<span class="h4"><a class="selflink" id="section-7.1.7" href="#section-7.1.7">7.1.7</a>. Message Authentication Code Algorithms</span>
Message authentication code algorithms are used in AuthenticatedData
in the macAlgorithm field. The message authentication code
algorithms used in this document are HMAC with SHA-1, HMAC with
SHA-224, HMAC with SHA-256, HMAC with SHA-384, and HMAC with SHA-512.
The object identifiers and parameters associated with these
algorithms are found in [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>] and [<a href="#ref-HMAC-SHA2" title=""Identifiers and Test Vectors for HMAC- SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC- SHA-512"">HMAC-SHA2</a>].
NOTE: [<a href="#ref-HMAC-SHA2" title=""Identifiers and Test Vectors for HMAC- SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC- SHA-512"">HMAC-SHA2</a>] defines the object identifiers for HMAC with
SHA-224, HMAC with SHA-256, HMAC with SHA-384, and HMAC with SHA-512,
but there is no ASN.1 module from which to import these object
identifiers. Therefore, the object identifiers for these algorithms
are included in the ASN.1 modules defined in <a href="#appendix-A">Appendix A</a>.
<span class="h4"><a class="selflink" id="section-7.1.8" href="#section-7.1.8">7.1.8</a>. Key Derivation Algorithm</span>
The KDF used in this document is as specified in Section 3.6.1 of
[<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>]. The hash algorithm is identified in the key agreement
algorithm. For example, dhSinglePass-stdDH-sha256kdf-scheme uses the
KDF from [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>] but uses SHA-256 instead of SHA-1.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Other Syntax</span>
The following additional syntax is used here.
When using ECDSA with SignedData, ECDSA signatures are encoded using
the type:
ECDSA-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER }
<span class="grey">Turner & Brown Informational [Page 24]</span>
<span id="page-25" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
ECDSA-Sig-Value is specified in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]. Within CMS, ECDSA-Sig-
Value is DER-encoded and placed within a signature field of
SignedData.
When using ECDH and ECMQV with EnvelopedData, AuthenticatedData, and
AuthEnvelopedData, ephemeral and static public keys are encoded using
the type ECPoint. Implementations MUST support uncompressed keys,
MAY support compressed keys, and MUST NOT support hybrid keys.
ECPoint ::= OCTET STRING
When using ECMQV with EnvelopedData, AuthenticatedData, and
AuthEnvelopedData, the sending agent's ephemeral public key and
additional keying material are encoded using the type:
MQVuserKeyingMaterial ::= SEQUENCE {
ephemeralPublicKey OriginatorPublicKey,
addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL }
The ECPoint syntax is used to represent the ephemeral public key and
is placed in the ephemeralPublicKey publicKey field. The additional
user keying material is placed in the addedukm field. Then the
MQVuserKeyingMaterial value is DER-encoded and placed within the ukm
field of EnvelopedData, AuthenticatedData, or AuthEnvelopedData.
When using ECDH or ECMQV with EnvelopedData, AuthenticatedData, or
AuthEnvelopedData, the key-encryption keys are derived by using the
type:
ECC-CMS-SharedInfo ::= SEQUENCE {
keyInfo AlgorithmIdentifier,
entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
suppPubInfo [2] EXPLICIT OCTET STRING }
The fields of ECC-CMS-SharedInfo are as follows:
keyInfo contains the object identifier of the key-encryption
algorithm (used to wrap the CEK) and associated parameters. In
this specification, 3DES wrap has NULL parameters while the AES
wraps have absent parameters.
entityUInfo optionally contains additional keying material
supplied by the sending agent. When used with ECDH and CMS, the
entityUInfo field contains the octet string ukm. When used with
ECMQV and CMS, the entityUInfo contains the octet string addedukm
(encoded in MQVuserKeyingMaterial).
<span class="grey">Turner & Brown Informational [Page 25]</span>
<span id="page-26" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
suppPubInfo contains the length of the generated KEK, in bits,
represented as a 32-bit number, as in [<a href="#ref-CMS-DH" title=""Diffie-Hellman Key Agreement Method"">CMS-DH</a>] and [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>].
(For example, for AES-256 it would be 00 00 01 00.)
Within CMS, ECC-CMS-SharedInfo is DER-encoded and used as input to
the key derivation function, as specified in Section 3.6.1 of [<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>].
NOTE: ECC-CMS-SharedInfo differs from the OtherInfo specified in
[<a href="#ref-CMS-DH" title=""Diffie-Hellman Key Agreement Method"">CMS-DH</a>]. Here, a counter value is not included in the keyInfo field
because the key derivation function specified in Section 3.6.1 of
[<a href="#ref-SEC1" title=""SEC 1: Elliptic Curve Cryptography"">SEC1</a>] ensures that sufficient keying data is provided.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Recommended Algorithms and Elliptic Curves</span>
It is RECOMMENDED that implementations of this specification support
SignedData and EnvelopedData. Support for AuthenticatedData and
AuthEnvelopedData is OPTIONAL.
In order to encourage interoperability, implementations SHOULD use
the elliptic curve domain parameters specified by [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>].
Implementations that support SignedData with ECDSA:
- MUST support ECDSA with SHA-256; and
- MAY support ECDSA with SHA-1, ECDSA with SHA-224, ECDSA with
SHA-384, and ECDSA with SHA-512; other digital signature
algorithms MAY also be supported.
When using ECDSA, to promote interoperability it is RECOMMENDED that
the P-192, P-224, and P-256 curves be used with SHA-256; the P-384
curve be used with SHA-384; and the P-521 curve be used with SHA-512.
If EnvelopedData is supported, then ephemeral-static ECDH standard
primitive MUST be supported. Support for ephemeral-static ECDH co-
factor is OPTIONAL, and support for 1-Pass ECMQV is also OPTIONAL.
Implementations that support EnvelopedData with the ephemeral-static
ECDH standard primitive:
- MUST support the dhSinglePass-stdDH-sha256kdf-scheme key
agreement algorithm, the id-aes128-wrap key wrap algorithm, and
the id-aes128-cbc content encryption algorithm; and
<span class="grey">Turner & Brown Informational [Page 26]</span>
<span id="page-27" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
- MAY support the dhSinglePass-stdDH-sha1kdf-scheme, dhSinglePass-
stdDH-sha224kdf-scheme, dhSinglePass-stdDH-sha384kdf-scheme, and
dhSinglePass-stdDH-sha512kdf-scheme key agreement algorithms;
the id-alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key
wrap algorithms; and the des-ede3-cbc, id-aes192-cbc, and id-
aes256-cbc content encryption algorithms; other algorithms MAY
also be supported.
Implementations that support EnvelopedData with the ephemeral-static
ECDH cofactor primitive:
- MUST support the dhSinglePass-cofactorDH-sha256kdf-scheme key
agreement algorithm, the id-aes128-wrap key wrap algorithm, and
the id-aes128-cbc content encryption algorithm; and
- MAY support the dhSinglePass-cofactorDH-sha1kdf-scheme,
dhSinglePass-cofactorDH-sha224kdf-scheme, dhSinglePass-
cofactorDH-sha384kdf-scheme, and dhSinglePass-cofactorDH-
sha512kdf-scheme key agreement; the id-alg-CMS3DESwrap, id-
aes192-wrap, and id-aes256-wrap key wrap algorithms; and the
des-ede3-cbc, id-aes192-cbc, and id-aes256-cbc content
encryption algorithms; other algorithms MAY also be supported.
Implementations that support EnvelopedData with 1-Pass ECMQV:
- MUST support the mqvSinglePass-sha256kdf-scheme key agreement
algorithm, the id-aes128-wrap key wrap algorithm, and the id-
aes128-cbc content encryption algorithm; and
- MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, and
mqvSinglePass-sha512kdf-scheme key agreement algorithms; the id-
alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
algorithms; and the des-ede3-cbc, id-aes192-cbc, and id-
aes256-cbc content encryption algorithms; other algorithms MAY
also be supported.
Implementations that support AuthenticatedData with 1-Pass ECMQV:
- MUST support the mqvSinglePass-sha256kdf-scheme key agreement,
the id-aes128-wrap key wrap, the id-sha256 message digest, and
id-hmacWithSHA256 message authentication code algorithms; and
- MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, mqvSinglePass-
sha512kdf-scheme key agreement algorithms; the id-alg-
CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
algorithms; the id-sha1, id-sha224, id-sha384, and id-sha512,
<span class="grey">Turner & Brown Informational [Page 27]</span>
<span id="page-28" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
message digest algorithms; and the hmac-SHA1, id-hmacWithSHA224,
id-hmacWithSHA384, and id-hmacWithSHA512 message authentication
code algorithms; other algorithms MAY also be supported.
Implementations that support AuthEnvelopedData with 1-Pass ECMQV:
- MUST support the mqvSinglePass-sha256kdf-scheme key agreement,
the id-aes128-wrap key wrap, and the id-aes128-ccm
authenticated-content encryption; and
- MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, and
mqvSinglePass-sha512kdf-scheme key agreement algorithms; the id-
alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
algorithms; and the id-aes192-ccm, id-aes256-ccm, id-aes128-gcm,
id-aes192-gcm, and id-aes256-ccm authenticated-content
encryption algorithms; other algorithms MAY also be supported.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
Cryptographic algorithms will be broken or weakened over time.
Implementers and users need to check that the cryptographic
algorithms listed in this document continue to provide the expected
level of security. The IETF from time to time may issue documents
dealing with the current state of the art.
Cryptographic algorithms rely on random numbers. See [<a href="#ref-RANDOM" title=""Randomness Requirements for Security"">RANDOM</a>] for
guidance on generation of random numbers.
Receiving agents that validate signatures and sending agents that
encrypt messages need to be cautious of cryptographic processing
usage when validating signatures and encrypting messages using keys
larger than those mandated in this specification. An attacker could
send keys and/or certificates with keys that would result in
excessive cryptographic processing, for example, keys larger than
those mandated in this specification, which could swamp the
processing element. Agents that use such keys without first
validating the certificate to a trust anchor are advised to have some
sort of cryptographic resource management system to prevent such
attacks.
Using secret keys of an appropriate size is crucial to the security
of a Diffie-Hellman exchange. For elliptic curve groups, the size of
the secret key must be equal to the size of n (the order of the group
generated by the point g). Using larger secret keys provides
absolutely no additional security, and using smaller secret keys is
likely to result in dramatically less security. (See [<a href="#ref-SP800-56A" title=" Special Publication 800-56A: Recommendation Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)">SP800-56A</a>] for
more information on selecting secret keys.)
<span class="grey">Turner & Brown Informational [Page 28]</span>
<span id="page-29" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
This specification is based on [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>], [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>], [<a href="#ref-CMS-AESCG" title=""Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syntax (CMS)"">CMS-AESCG</a>],
[<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>], [<a href="#ref-CMS-AUTHENV" title=""Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type"">CMS-AUTHENV</a>], [<a href="#ref-CMS-DH" title=""Diffie-Hellman Key Agreement Method"">CMS-DH</a>], [<a href="#ref-CMS-SHA2" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">CMS-SHA2</a>], [<a href="#ref-FIPS180-3" title=" FIPS Publication 180-3: Secure Hash Standard">FIPS180-3</a>],
[<a href="#ref-FIPS186-3" title=" FIPS Publication 186-3: Digital Signature Standard">FIPS186-3</a>], and [<a href="#ref-HMAC-SHA2" title=""Identifiers and Test Vectors for HMAC- SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC- SHA-512"">HMAC-SHA2</a>], and the appropriate security
considerations of those documents apply.
In addition, implementers of AuthenticatedData and AuthEnvelopedData
should be aware of the concerns expressed in [<a href="#ref-BON" title=""The Security of Multicast MAC"">BON</a>] when using
AuthenticatedData and AuthEnvelopedData to send messages to more than
one recipient. Also, users of MQV should be aware of the
vulnerability described in [<a href="#ref-K" title=""MQV Vulnerability"">K</a>].
When implementing EnvelopedData, AuthenticatedData, and
AuthEnvelopedData, there are five algorithm-related choices that need
to be made:
1) What is the public key size?
2) What is the KDF?
3) What is the key wrap algorithm?
4) What is the content encryption algorithm?
5) What is the curve?
Consideration must be given to the strength of the security provided
by each of these choices. Security algorithm strength is measured in
bits, where bits is measured in equivalence to a symmetric cipher
algorithm. Thus, a strong symmetric cipher algorithm with a key of X
bits is said to provide X bits of security. For other algorithms,
the key size is mapped to an equivalent symmetric cipher strength.
It is recommended that the bits of security provided by each are
roughly equivalent. The following table provides comparable minimum
bits of security [<a href="#ref-SP800-57" title=" Special Publication 800-57: Recommendation for Key Management - Part 1 (Revised)">SP800-57</a>] for the ECDH/ECMQV key sizes, KDFs, key
wrapping algorithms, and content encryption algorithms. It also
lists curves [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] for the key sizes.
<span class="grey">Turner & Brown Informational [Page 29]</span>
<span id="page-30" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
Minimum | ECDH or | Key | Key | Content | Curves
Bits of | ECMQV | Derivation | Wrap | Encryption |
Security | Key Size | Function | Alg. | Alg. |
---------+----------+------------+----------+-------------+----------
80 | 160-223 | SHA-1 | 3DES | 3DES CBC | sect163k1
| | SHA-224 | AES-128 | AES-128 CBC | secp163r2
| | SHA-256 | AES-192 | AES-192 CBC | secp192r1
| | SHA-384 | AES-256 | AES-256 CBC |
| | SHA-512 | | |
---------+----------+------------+----------+-------------+---------
112 | 224-255 | SHA-1 | 3DES | 3DES CBC | secp224r1
| | SHA-224 | AES-128 | AES-128 CBC | sect233k1
| | SHA-256 | AES-192 | AES-192 CBC | sect233r1
| | SHA-384 | AES-256 | AES-256 CBC |
| | SHA-512 | | |
---------+----------+------------+----------+-------------+---------
128 | 256-383 | SHA-1 | AES-128 | AES-128 CBC | secp256r1
| | SHA-224 | AES-192 | AES-192 CBC | sect283k1
| | SHA-256 | AES-256 | AES-256 CBC | sect283r1
| | SHA-384 | | |
| | SHA-512 | | |
---------+----------+------------+----------+-------------+---------
192 | 384-511 | SHA-224 | AES-192 | AES-192 CBC | secp384r1
| | SHA-256 | AES-256 | AES-256 CBC | sect409k1
| | SHA-384 | | | sect409r1
| | SHA-512 | | |
---------+----------+------------+----------+-------------+---------
256 | 512+ | SHA-256 | AES-256 | AES-256 CBC | secp521r1
| | SHA-384 | | | sect571k1
| | SHA-512 | | | sect571r1
---------+----------+------------+----------+-------------+---------
<span class="grey">Turner & Brown Informational [Page 30]</span>
<span id="page-31" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
To promote interoperability, the following choices are RECOMMENDED:
Minimum | ECDH or | Key | Key | Content | Curve
Bits of | ECMQV | Derivation | Wrap | Encryption |
Security | Key Size | Function | Alg. | Alg. |
---------+----------+------------+----------+-------------+----------
80 | 192 | SHA-256 | 3DES | 3DES CBC | secp192r1
---------+----------+------------+----------+-------------+----------
112 | 224 | SHA-256 | 3DES | 3DES CBC | secp224r1
---------+----------+------------+----------+-------------+----------
128 | 256 | SHA-256 | AES-128 | AES-128 CBC | secp256r1
---------+----------+------------+----------+-------------+----------
192 | 384 | SHA-384 | AES-256 | AES-256 CBC | secp384r1
---------+----------+------------+----------+-------------+----------
256 | 512+ | SHA-512 | AES-256 | AES-256 CBC | secp521r1
---------+----------+------------+----------+-------------+----------
When implementing SignedData, there are three algorithm-related
choices that need to be made:
1) What is the public key size?
2) What is the hash algorithm?
3) What is the curve?
Consideration must be given to the bits of security provided by each
of these choices. Security is measured in bits, where a strong
symmetric cipher with a key of X bits is said to provide X bits of
security. It is recommended that the bits of security provided by
each choice are roughly equivalent. The following table provides
comparable minimum bits of security [<a href="#ref-SP800-57" title=" Special Publication 800-57: Recommendation for Key Management - Part 1 (Revised)">SP800-57</a>] for the ECDSA key
sizes and message digest algorithms. It also lists curves [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
for the key sizes.
<span class="grey">Turner & Brown Informational [Page 31]</span>
<span id="page-32" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
Minimum | ECDSA | Message | Curve
Bits of | Key Size | Digest |
Security | | Algorithm |
---------+----------+-----------+-----------
80 | 160-223 | SHA-1 | sect163k1
| | SHA-224 | secp163r2
| | SHA-256 | secp192r1
| | SHA-384 |
| | SHA-512 |
---------+----------+-----------+-----------
112 | 224-255 | SHA-224 | secp224r1
| | SHA-256 | sect233k1
| | SHA-384 | sect233r1
| | SHA-512 |
---------+----------+-----------+-----------
128 | 256-383 | SHA-256 | secp256r1
| | SHA-384 | sect283k1
| | SHA-512 | sect283r1
---------+----------+-----------+-----------
192 | 384-511 | SHA-384 | secp384r1
| | SHA-512 | sect409k1
| | | sect409r1
---------+----------+-----------+-----------
256 | 512+ | SHA-512 | secp521r1
| | | sect571k1
| | | sect571r1
---------+----------+-----------+-----------
To promote interoperability, the following choices are RECOMMENDED:
Minimum | ECDSA | Message | Curve
Bits of | Key Size | Digest |
Security | | Algorithm |
---------+----------+-----------+-----------
80 | 192 | SHA-256 | sect192r1
---------+----------+-----------+-----------
112 | 224 | SHA-256 | secp224r1
---------+----------+-----------+-----------
128 | 256 | SHA-256 | secp256r1
---------+----------+-----------+-----------
192 | 384 | SHA-384 | secp384r1
---------+----------+-----------+-----------
256 | 512+ | SHA-512 | secp521r1
---------+----------+-----------+-----------
<span class="grey">Turner & Brown Informational [Page 32]</span>
<span id="page-33" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. IANA Considerations</span>
This document makes extensive use of object identifiers to register
originator public key types and algorithms. The algorithm object
identifiers are registered in the ANSI X9.62, ANSI X9.63, NIST, RSA,
and SECG arcs. Additionally, object identifiers are used to identify
the ASN.1 modules found in <a href="#appendix-A">Appendix A</a> (there are two). These are
defined by the SMIME WG Registrar in an arc delegated by RSA to the
SMIME Working Group: iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(0). No action by IANA is
necessary for this document or any anticipated updates.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-CMS">CMS</a>] Housley, R., "Cryptographic Message Syntax (CMS)", <a href="./rfc5652">RFC</a>
<a href="./rfc5652">5652</a>, September 2009.
[<a id="ref-CMS-AES">CMS-AES</a>] Schaad, J., "Use of the Advanced Encryption Standard
(AES) Encryption Algorithm in Cryptographic Message
Syntax (CMS)", <a href="./rfc3565">RFC 3565</a>, July 2003.
[<a id="ref-CMS-AESCG">CMS-AESCG</a>] Housley, R., "Using AES-CCM and AES-GCM Authenticated
Encryption in the Cryptographic Message Syntax (CMS)",
<a href="./rfc5084">RFC 5084</a>, December 2007.
[<a id="ref-CMS-ALG">CMS-ALG</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Algorithms", <a href="./rfc3370">RFC 3370</a>, August 2002.
[<a id="ref-CMS-AUTHENV">CMS-AUTHENV</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Authenticated-Enveloped-Data Content Type", <a href="./rfc5083">RFC 5083</a>,
November 2007.
[<a id="ref-CMS-DH">CMS-DH</a>] Rescorla, E., "Diffie-Hellman Key Agreement Method",
<a href="./rfc2631">RFC 2631</a>, June 1999.
[<a id="ref-CMS-SHA2">CMS-SHA2</a>] Turner, S., "Using SHA2 Algorithms with Cryptographic
Message Syntax", <a href="./rfc5754">RFC 5754</a>, January 2010.
[<a id="ref-FIPS180-3">FIPS180-3</a>] National Institute of Standards and Technology (NIST),
FIPS Publication 180-3: Secure Hash Standard, October
2008.
[<a id="ref-FIPS186-3">FIPS186-3</a>] National Institute of Standards and Technology (NIST),
FIPS Publication 186-3: Digital Signature Standard,
June 2009.
<span class="grey">Turner & Brown Informational [Page 33]</span>
<span id="page-34" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
[<a id="ref-HMAC-SHA2">HMAC-SHA2</a>] Nystrom, M., "Identifiers and Test Vectors for HMAC-
SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-
SHA-512", <a href="./rfc4231">RFC 4231</a>, December 2005.
[<a id="ref-MUST">MUST</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-MSG">MSG</a>] Ramsdell, B. and S. Turner, "Secure/Multipurpose
Internet Mail Extensions (S/MIME) Version 3.2 Message
Specification", <a href="./rfc5751">RFC 5751</a>, January 2010.
[<a id="ref-PKI">PKI</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", <a href="./rfc5280">RFC 5280</a>, May 2008.
[<a id="ref-PKI-ALG">PKI-ALG</a>] Turner, S., Brown, D., Yiu, K., Housley, R., and T.
Polk, "Elliptic Curve Cryptography Subject Public Key
Information", <a href="./rfc5480">RFC 5480</a>, March 2009.
[<a id="ref-RANDOM">RANDOM</a>] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC</a>
<a href="./rfc4086">4086</a>, June 2005.
[<a id="ref-RSAOAEP">RSAOAEP</a>] Schaad, J., Kaliski, B., and R. Housley, "Additional
Algorithms and Identifiers for RSA Cryptography for
use in the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile", <a href="./rfc4055">RFC 4055</a>, June 2005.
[<a id="ref-SEC1">SEC1</a>] Standards for Efficient Cryptography Group, "SEC 1:
Elliptic Curve Cryptography", version 2.0, May 2009,
available from www.secg.org.
[<a id="ref-SP800-56A">SP800-56A</a>] National Institute of Standards and Technology (NIST),
Special Publication 800-56A: Recommendation Pair-Wise
Key Establishment Schemes Using Discrete Logarithm
Cryptography (Revised), March 2007.
[<a id="ref-X.680">X.680</a>] ITU-T Recommendation X.680 (2002) | ISO/IEC
8824-1:2002. Information Technology - Abstract Syntax
Notation One.
<span class="grey">Turner & Brown Informational [Page 34]</span>
<span id="page-35" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-BON">BON</a>] D. Boneh, "The Security of Multicast MAC",
Presentation at Selected Areas of Cryptography 2000,
Center for Applied Cryptographic Research, University
of Waterloo, 2000. Paper version available from
<a href="http://crypto.stanford.edu/~dabo/papers/mmac.ps">http://crypto.stanford.edu/~dabo/papers/mmac.ps</a>
[<a id="ref-CERTCAP">CERTCAP</a>] Santesson, S., "X.509 Certificate Extension for
Secure/Multipurpose Internet Mail Extensions (S/MIME)
Capabilities", <a href="./rfc4262">RFC 4262</a>, December 2005.
[<a id="ref-CMS-ASN">CMS-ASN</a>] Hoffman, P. and J. Schaad, "New ASN.1 Modules for CMS
and S/MIME", Work in Progress, August 2009.
[<a id="ref-CMS-ECC">CMS-ECC</a>] Blake-Wilson, S., Brown, D., and P. Lambert, "Use of
Elliptic Curve Cryptography (ECC) Algorithms in
Cryptographic Message Syntax (CMS)", <a href="./rfc3278">RFC 3278</a>, April
2002.
[<a id="ref-CMS-KEA">CMS-KEA</a>] Pawling, J., "Use of the KEA and SKIPJACK Algorithms
in CMS", <a href="./rfc2876">RFC 2876</a>, July 2000.
[<a id="ref-K">K</a>] B. Kaliski, "MQV Vulnerability", Posting to ANSI X9F1
and IEEE P1363 newsgroups, 1998.
[<a id="ref-PKI-ASN">PKI-ASN</a>] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
PKIX", Work in Progress, August 2009.
[<a id="ref-SP800-57">SP800-57</a>] National Institute of Standards and Technology (NIST),
Special Publication 800-57: Recommendation for Key
Management - Part 1 (Revised), March 2007.
[<a id="ref-X.681">X.681</a>] ITU-T Recommendation X.681 (2002) | ISO/IEC
8824-2:2002. Information Technology - Abstract Syntax
Notation One: Information Object Specification.
[<a id="ref-X.682">X.682</a>] ITU-T Recommendation X.682 (2002) | ISO/IEC
8824-3:2002. Information Technology - Abstract Syntax
Notation One: Constraint Specification.
[<a id="ref-X.683">X.683</a>] ITU-T Recommendation X.683 (2002) | ISO/IEC
8824-4:2002. Information Technology - Abstract Syntax
Notation One: Parameterization of ASN.1
Specifications, 2002.
<span class="grey">Turner & Brown Informational [Page 35]</span>
<span id="page-36" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
[<a id="ref-X9.62">X9.62</a>] X9.62-2005, "Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital
Signature Standard (ECDSA)", November, 2005.
<span class="grey">Turner & Brown Informational [Page 36]</span>
<span id="page-37" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASN.1 Modules</span>
<a href="#appendix-A.1">Appendix A.1</a> provides the normative ASN.1 definitions for the
structures described in this specification using ASN.1 as defined in
[<a href="#ref-X.680">X.680</a>] for compilers that support the 1988 ASN.1.
<a href="#appendix-A.2">Appendix A.2</a> provides informative ASN.1 definitions for the
structures described in this specification using ASN.1 as defined in
[<a href="#ref-X.680">X.680</a>], [<a href="#ref-X.681">X.681</a>], [<a href="#ref-X.682">X.682</a>], and [<a href="#ref-X.683">X.683</a>] for compilers that support the
2002 ASN.1. This appendix contains the same information as <a href="#appendix-A.1">Appendix</a>
<a href="#appendix-A.1">A.1</a> in a more recent (and precise) ASN.1 notation; however, <a href="#appendix-A.1">Appendix</a>
<a href="#appendix-A.1">A.1</a> takes precedence in case of conflict.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. 1988 ASN.1 Module</span>
CMSECCAlgs-2009-88
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-ecc-alg-2009-88(45) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS ALL
IMPORTS
-- From [<a href="#ref-PKI" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PKI</a>]
AlgorithmIdentifier
FROM PKIX1Explicit88
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) mod(0)
pkix1-explicit(18) }
-- From [<a href="#ref-RSAOAEP" title=""Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RSAOAEP</a>]
id-sha224, id-sha256, id-sha384, id-sha512
FROM PKIX1-PSS-OAEP-Algorithms
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-rsa-pkalgs(33) }
<span class="grey">Turner & Brown Informational [Page 37]</span>
<span id="page-38" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
-- From [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
id-sha1, ecdsa-with-SHA1, ecdsa-with-SHA224,
ecdsa-with-SHA256, ecdsa-with-SHA384, ecdsa-with-SHA512,
id-ecPublicKey, ECDSA-Sig-Value, ECPoint, ECParameters
FROM PKIX1Algorithms2008
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0) 45 }
-- From [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
OriginatorPublicKey, UserKeyingMaterial
FROM CryptographicMessageSyntax2004
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) cms-2004(24) }
-- From [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>]
hMAC-SHA1, des-ede3-cbc, id-alg-CMS3DESwrap, CBCParameter
FROM CryptographicMessageSyntaxAlgorithms
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) cmsalg-2001(16) }
-- From [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>]
id-aes128-CBC, id-aes192-CBC, id-aes256-CBC, AES-IV,
id-aes128-wrap, id-aes192-wrap, id-aes256-wrap
FROM CMSAesRsaesOaep
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-aes(19) }
-- From [<a href="#ref-CMS-AESCG" title=""Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syntax (CMS)"">CMS-AESCG</a>]
id-aes128-CCM, id-aes192-CCM, id-aes256-CCM, CCMParameters
id-aes128-GCM, id-aes192-GCM, id-aes256-GCM, GCMParameters
FROM CMS-AES-CCM-and-AES-GCM
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-aes(32) }
;
--
-- Message Digest Algorithms: Imported from [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] and [<a href="#ref-RSAOAEP" title=""Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RSAOAEP</a>]
--
-- id-sha1 Parameters are preferred absent
-- id-sha224 Parameters are preferred absent
-- id-sha256 Parameters are preferred absent
<span class="grey">Turner & Brown Informational [Page 38]</span>
<span id="page-39" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
-- id-sha384 Parameters are preferred absent
-- id-sha512 Parameters are preferred absent
--
-- Signature Algorithms: Imported from [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
--
-- ecdsa-with-SHA1 Parameters are NULL
-- ecdsa-with-SHA224 Parameters are absent
-- ecdsa-with-SHA256 Parameters are absent
-- ecdsa-with-SHA384 Parameters are absent
-- ecdsa-with-SHA512 Parameters are absent
-- ECDSA Signature Value
-- Contents of SignatureValue OCTET STRING
-- ECDSA-Sig-Value ::= SEQUENCE {
-- r INTEGER,
-- s INTEGER
-- }
--
-- Key Agreement Algorithms
--
x9-63-scheme OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) tc68(133) country(16) x9(840)
x9-63(63) schemes(0) }
secg-scheme OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) certicom(132) schemes(1) }
--
-- Diffie-Hellman Single Pass, Standard, with KDFs
--
-- Parameters are always present and indicate the key wrap algorithm
-- with KeyWrapAlgorithm.
dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 2 }
dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 0 }
dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 1 }
<span class="grey">Turner & Brown Informational [Page 39]</span>
<span id="page-40" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 2 }
dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 3 }
--
-- Diffie-Hellman Single Pass, Cofactor, with KDFs
--
dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 3 }
dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 0 }
dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 1 }
dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 2 }
dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 3 }
--
-- MQV Single Pass, Cofactor, with KDFs
--
mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 16 }
mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 0 }
mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 1 }
mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 2 }
mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 3 }
--
-- Key Wrap Algorithms: Imported from [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>] and [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>]
--
<span class="grey">Turner & Brown Informational [Page 40]</span>
<span id="page-41" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KeyWrapAlgorithm ::= AlgorithmIdentifier
-- id-alg-CMS3DESwrap Parameters are NULL
-- id-aes128-wrap Parameters are absent
-- id-aes192-wrap Parameters are absent
-- id-aes256-wrap Parameters are absent
--
-- Content Encryption Algorithms: Imported from [<a href="#ref-CMS-ALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMS-ALG</a>]
-- and [<a href="#ref-CMS-AES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMS-AES</a>]
--
-- des-ede3-cbc Parameters are CBCParameter
-- id-aes128-CBC Parameters are AES-IV
-- id-aes192-CBC Parameters are AES-IV
-- id-aes256-CBC Parameters are AES-IV
-- id-aes128-CCM Parameters are CCMParameters
-- id-aes192-CCM Parameters are CCMParameters
-- id-aes256-CCM Parameters are CCMParameters
-- id-aes128-GCM Parameters are GCMParameters
-- id-aes192-GCM Parameters are GCMParameters
-- id-aes256-GCM Parameters are GCMParameters
--
-- Message Authentication Code Algorithms
--
-- hMAC-SHA1 Parameters are preferred absent
-- HMAC with SHA-224, SHA-256, SHA_384, and SHA-512 Parameters are
-- absent
id-hmacWithSHA224 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 8 }
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 9 }
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 10 }
id-hmacWithSHA512 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 11 }
<span class="grey">Turner & Brown Informational [Page 41]</span>
<span id="page-42" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
--
-- Originator Public Key Algorithms: Imported from [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
--
-- id-ecPublicKey Parameters are absent, NULL, or ECParameters
-- Format for both ephemeral and static public keys: Imported from
-- [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
-- ECPoint ::= OCTET STRING
-- ECParameters ::= CHOICE {
-- namedCurve OBJECT IDENTIFIER
-- commented out in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] implicitCurve NULL
-- commented out in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] specifiedCurve SpecifiedECDomain
-- commented out in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] ...
-- }
-- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
-- Details for SpecifiedECDomain can be found in [<a href="#ref-X9.62" title=""Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)"">X9.62</a>].
-- Any future additions to this CHOICE should be coordinated
-- with ANSI X9.
-- Format of KeyAgreeRecipientInfo ukm field when used with
-- ECMQV
MQVuserKeyingMaterial ::= SEQUENCE {
ephemeralPublicKey OriginatorPublicKey,
addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL
}
-- 'SharedInfo' for input to KDF when using ECDH and ECMQV with
-- EnvelopedData, AuthenticatedData, or AuthEnvelopedData
ECC-CMS-SharedInfo ::= SEQUENCE {
keyInfo AlgorithmIdentifier,
entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
suppPubInfo [2] EXPLICIT OCTET STRING
}
--
-- S/MIME Capabilities
-- An identifier followed by type.
--
<span class="grey">Turner & Brown Informational [Page 42]</span>
<span id="page-43" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
--
-- S/MIME Capabilities: Message Digest Algorithms
--
-- Found in [<a href="#ref-CMS-SHA2" title=""Using SHA2 Algorithms with Cryptographic Message Syntax"">CMS-SHA2</a>].
--
-- S/MIME Capabilities: Signature Algorithms
--
-- ecdsa-with-SHA1 Type NULL
-- ecdsa-with-SHA224 Type absent
-- ecdsa-with-SHA256 Type absent
-- ecdsa-with-SHA384 Type absent
-- ecdsa-with-SHA512 Type absent
--
-- S/MIME Capabilities: ECDH, Single Pass, Standard
--
-- dhSinglePass-stdDH-sha1kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-stdDH-sha224kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-stdDH-sha256kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-stdDH-sha384kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-stdDH-sha512kdf Type is the KeyWrapAlgorithm
--
-- S/MIME Capabilities: ECDH, Single Pass, Cofactor
--
-- dhSinglePass-cofactorDH-sha1kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-cofactorDH-sha224kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-cofactorDH-sha256kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-cofactorDH-sha384kdf Type is the KeyWrapAlgorithm
-- dhSinglePass-cofactorDH-sha512kdf Type is the KeyWrapAlgorithm
--
-- S/MIME Capabilities: ECMQV, Single Pass, Standard
--
-- mqvSinglePass-sha1kdf Type is the KeyWrapAlgorithm
-- mqvSinglePass-sha224kdf Type is the KeyWrapAlgorithm
-- mqvSinglePass-sha256kdf Type is the KeyWrapAlgorithm
-- mqvSinglePass-sha384kdf Type is the KeyWrapAlgorithm
-- mqvSinglePass-sha512kdf Type is the KeyWrapAlgorithm
<span class="grey">Turner & Brown Informational [Page 43]</span>
<span id="page-44" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
--
-- S/MIME Capabilities: Message Authentication Code Algorithms
--
-- hMACSHA1 Type is preferred absent
-- id-hmacWithSHA224 Type is absent
-- if-hmacWithSHA256 Type is absent
-- id-hmacWithSHA384 Type is absent
-- id-hmacWithSHA512 Type is absent
END
<span class="grey">Turner & Brown Informational [Page 44]</span>
<span id="page-45" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. 2004 ASN.1 Module</span>
CMSECCAlgs-2009-02
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-ecc-alg-2009-02(46) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS ALL
IMPORTS
-- From [<a href="#ref-PKI-ASN" title=""New ASN.1 Modules for PKIX"">PKI-ASN</a>]
mda-sha1, sa-ecdsaWithSHA1, sa-ecdsaWithSHA224, sa-ecdsaWithSHA256,
sa-ecdsaWithSHA384, sa-ecdsaWithSHA512, id-ecPublicKey,
ECDSA-Sig-Value, ECPoint, ECParameters
FROM PKIXAlgs-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-algorithms2008-02(56) }
-- From [<a href="#ref-PKI-ASN" title=""New ASN.1 Modules for PKIX"">PKI-ASN</a>]
mda-sha224, mda-sha256, mda-sha384, mda-sha512
FROM PKIX1-PSS-OAEP-Algorithms-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-pkix1-rsa-pkalgs-02(54) }
-- FROM [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
KEY-WRAP, SIGNATURE-ALGORITHM, DIGEST-ALGORITHM, ALGORITHM,
PUBLIC-KEY, MAC-ALGORITHM, CONTENT-ENCRYPTION, KEY-AGREE, SMIME-CAPS,
AlgorithmIdentifier{}
FROM AlgorithmInformation-2009
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-algorithmInformation-02(58) }
-- From [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
OriginatorPublicKey, UserKeyingMaterial
FROM CryptographicMessageSyntax-2009
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-2004-02(41) }
<span class="grey">Turner & Brown Informational [Page 45]</span>
<span id="page-46" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
-- From [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
maca-hMAC-SHA1, cea-3DES-cbc, kwa-3DESWrap, CBCParameter
FROM CryptographicMessageSyntaxAlgorithms-2009
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cmsalg-2001-02(37) }
-- From [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
cea-aes128-cbc, cea-aes192-cbc, cea-aes256-cbc, kwa-aes128-wrap,
kwa-aes192-wrap, kwa-aes256-wrap
FROM CMSAesRsaesOaep-2009
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-aes-02(38) }
-- From [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
cea-aes128-CCM, cea-aes192-CCM, cea-aes256-CCM, cea-aes128-GCM,
cea-aes192-GCM, cea-aes256-GCM
FROM CMS-AES-CCM-and-AES-GCM-2009
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) modules(0) id-mod-cms-aes-ccm-gcm-02(44) }
;
-- Constrains the SignedData digestAlgorithms field
-- Constrains the SignedData SignerInfo digestAlgorithm field
-- Constrains the AuthenticatedData digestAlgorithm field
-- Message Digest Algorithms: Imported from [<a href="#ref-PKI-ASN" title=""New ASN.1 Modules for PKIX"">PKI-ASN</a>]
-- MessageDigestAlgs DIGEST-ALGORITHM ::= {
-- mda-sha1 |
-- mda-sha224 |
-- mda-sha256 |
-- mda-sha384 |
-- mda-sha512,
-- ...
-- }
-- Constrains the SignedData SignerInfo signatureAlgorithm field
-- Signature Algorithms: Imported from [<a href="#ref-PKI-ASN" title=""New ASN.1 Modules for PKIX"">PKI-ASN</a>]
-- SignatureAlgs SIGNATURE-ALGORITHM ::= {
-- sa-ecdsaWithSHA1 |
-- sa-ecdsaWithSHA224 |
-- sa-ecdsaWithSHA256 |
<span class="grey">Turner & Brown Informational [Page 46]</span>
<span id="page-47" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
-- sa-ecdsaWithSHA384 |
-- sa-ecdsaWithSHA512,
-- ...
-- }
-- ECDSA Signature Value: Imported from [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
-- Contents of SignatureValue OCTET STRING
-- ECDSA-Sig-Value ::= SEQUENCE {
-- r INTEGER,
-- s INTEGER
-- }
--
-- Key Agreement Algorithms
--
-- Constrains the EnvelopedData RecipientInfo KeyAgreeRecipientInfo
-- keyEncryption Algorithm field
-- Constrains the AuthenticatedData RecipientInfo
-- KeyAgreeRecipientInfo keyEncryption Algorithm field
-- Constrains the AuthEnvelopedData RecipientInfo
-- KeyAgreeRecipientInfo keyEncryption Algorithm field
-- DH variants are not used with AuthenticatedData or
-- AuthEnvelopedData
KeyAgreementAlgs KEY-AGREE ::= {
kaa-dhSinglePass-stdDH-sha1kdf-scheme |
kaa-dhSinglePass-stdDH-sha224kdf-scheme |
kaa-dhSinglePass-stdDH-sha256kdf-scheme |
kaa-dhSinglePass-stdDH-sha384kdf-scheme |
kaa-dhSinglePass-stdDH-sha512kdf-scheme |
kaa-dhSinglePass-cofactorDH-sha1kdf-scheme |
kaa-dhSinglePass-cofactorDH-sha224kdf-scheme |
kaa-dhSinglePass-cofactorDH-sha256kdf-scheme |
kaa-dhSinglePass-cofactorDH-sha384kdf-scheme |
kaa-dhSinglePass-cofactorDH-sha512kdf-scheme |
kaa-mqvSinglePass-sha1kdf-scheme |
kaa-mqvSinglePass-sha224kdf-scheme |
kaa-mqvSinglePass-sha256kdf-scheme |
kaa-mqvSinglePass-sha384kdf-scheme |
kaa-mqvSinglePass-sha512kdf-scheme,
...
}
<span class="grey">Turner & Brown Informational [Page 47]</span>
<span id="page-48" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
x9-63-scheme OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) tc68(133) country(16) x9(840)
x9-63(63) schemes(0) }
secg-scheme OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) certicom(132) schemes(1) }
--
-- Diffie-Hellman Single Pass, Standard, with KDFs
--
-- Parameters are always present and indicate the Key Wrap Algorithm
kaa-dhSinglePass-stdDH-sha1kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-stdDH-sha1kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha1kdf-scheme
}
dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 2 }
kaa-dhSinglePass-stdDH-sha224kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-stdDH-sha224kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha224kdf-scheme
}
dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 0 }
kaa-dhSinglePass-stdDH-sha256kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-stdDH-sha256kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme
}
dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 1 }
<span class="grey">Turner & Brown Informational [Page 48]</span>
<span id="page-49" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
kaa-dhSinglePass-stdDH-sha384kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-stdDH-sha384kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme
}
dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 2 }
kaa-dhSinglePass-stdDH-sha512kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-stdDH-sha512kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme
}
dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 11 3 }
--
-- Diffie-Hellman Single Pass, Cofactor, with KDFs
--
kaa-dhSinglePass-cofactorDH-sha1kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-cofactorDH-sha1kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha1kdf-scheme
}
dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 3 }
kaa-dhSinglePass-cofactorDH-sha224kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-cofactorDH-sha224kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha224kdf-scheme
}
dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 0 }
<span class="grey">Turner & Brown Informational [Page 49]</span>
<span id="page-50" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
kaa-dhSinglePass-cofactorDH-sha256kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-cofactorDH-sha256kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha256kdf-scheme
}
dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 1 }
kaa-dhSinglePass-cofactorDH-sha384kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-cofactorDH-sha384kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha384kdf-scheme
}
dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 2 }
kaa-dhSinglePass-cofactorDH-sha512kdf-scheme KEY-AGREE ::= {
IDENTIFIER dhSinglePass-cofactorDH-sha512kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha512kdf-scheme
}
dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 14 3 }
--
-- MQV Single Pass, Cofactor, with KDFs
--
kaa-mqvSinglePass-sha1kdf-scheme KEY-AGREE ::= {
IDENTIFIER mqvSinglePass-sha1kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-mqvSinglePass-sha1kdf-scheme
}
mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
x9-63-scheme 16 }
<span class="grey">Turner & Brown Informational [Page 50]</span>
<span id="page-51" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
kaa-mqvSinglePass-sha224kdf-scheme KEY-AGREE ::= {
IDENTIFIER mqvSinglePass-sha224kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-mqvSinglePass-sha224kdf-scheme
}
mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 0 }
kaa-mqvSinglePass-sha256kdf-scheme KEY-AGREE ::= {
IDENTIFIER mqvSinglePass-sha256kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-mqvSinglePass-sha256kdf-scheme
}
mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 1 }
kaa-mqvSinglePass-sha384kdf-scheme KEY-AGREE ::= {
IDENTIFIER mqvSinglePass-sha384kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-mqvSinglePass-sha384kdf-scheme
}
mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 2 }
kaa-mqvSinglePass-sha512kdf-scheme KEY-AGREE ::= {
IDENTIFIER mqvSinglePass-sha512kdf-scheme
PARAMS TYPE KeyWrapAlgorithm ARE required
UKM -- TYPE unencoded data -- ARE preferredPresent
SMIME-CAPS cap-kaa-mqvSinglePass-sha512kdf-scheme
}
mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
secg-scheme 15 3 }
--
-- Key Wrap Algorithms: Imported from [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
--
<span class="grey">Turner & Brown Informational [Page 51]</span>
<span id="page-52" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
KeyWrapAlgorithm ::= AlgorithmIdentifier { KEY-WRAP, { KeyWrapAlgs } }
KeyWrapAlgs KEY-WRAP ::= {
kwa-3DESWrap |
kwa-aes128-wrap |
kwa-aes192-wrap |
kwa-aes256-wrap,
...
}
--
-- Content Encryption Algorithms: Imported from [<a href="#ref-CMS-ASN" title=""New ASN.1 Modules for CMS and S/MIME"">CMS-ASN</a>]
--
-- Constrains the EnvelopedData EncryptedContentInfo encryptedContent
-- field and the AuthEnvelopedData EncryptedContentInfo
-- contentEncryptionAlgorithm field
-- ContentEncryptionAlgs CONTENT-ENCRYPTION ::= {
-- cea-3DES-cbc |
-- cea-aes128-cbc |
-- cea-aes192-cbc |
-- cea-aes256-cbc |
-- cea-aes128-ccm |
-- cea-aes192-ccm |
-- cea-aes256-ccm |
-- cea-aes128-gcm |
-- cea-aes192-gcm |
-- cea-aes256-gcm,
-- ...
-- }
-- des-ede3-cbc and aes*-cbc are used with EnvelopedData and
-- EncryptedData
-- aes*-ccm are used with AuthEnvelopedData
-- aes*-gcm are used with AuthEnvelopedData
-- (where * is 128, 192, and 256)
--
-- Message Authentication Code Algorithms
--
-- Constrains the AuthenticatedData
-- MessageAuthenticationCodeAlgorithm field
--
<span class="grey">Turner & Brown Informational [Page 52]</span>
<span id="page-53" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
MessageAuthAlgs MAC-ALGORITHM ::= {
-- maca-hMAC-SHA1 |
maca-hMAC-SHA224 |
maca-hMAC-SHA256 |
maca-hMAC-SHA384 |
maca-hMAC-SHA512,
...
}
maca-hMAC-SHA224 MAC-ALGORITHM ::= {
IDENTIFIER id-hmacWithSHA224
PARAMS ARE absent
IS-KEYED-MAC TRUE
SMIME-CAPS cap-hMAC-SHA224
}
id-hmacWithSHA224 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 8 }
maca-hMAC-SHA256 MAC-ALGORITHM ::= {
IDENTIFIER id-hmacWithSHA256
PARAMS ARE absent
IS-KEYED-MAC TRUE
SMIME-CAPS cap-hMAC-SHA256
}
id-hmacWithSHA256 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 9 }
maca-hMAC-SHA384 MAC-ALGORITHM ::= {
IDENTIFIER id-hmacWithSHA384
PARAMS ARE absent
IS-KEYED-MAC TRUE
SMIME-CAPS cap-hMAC-SHA384
}
id-hmacWithSHA384 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 10 }
maca-hMAC-SHA512 MAC-ALGORITHM ::= {
IDENTIFIER id-hmacWithSHA512
PARAMS ARE absent
IS-KEYED-MAC TRUE
SMIME-CAPS cap-hMAC-SHA512
}
<span class="grey">Turner & Brown Informational [Page 53]</span>
<span id="page-54" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
id-hmacWithSHA512 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549)
digestAlgorithm(2) 11 }
--
-- Originator Public Key Algorithms
--
-- Constraints on KeyAgreeRecipientInfo OriginatorIdentifierOrKey
-- OriginatorPublicKey algorithm field
OriginatorPKAlgorithms PUBLIC-KEY ::= {
opka-ec,
...
}
opka-ec PUBLIC-KEY ::={
IDENTIFIER id-ecPublicKey
KEY ECPoint
PARAMS TYPE CHOICE { n NULL, p ECParameters } ARE preferredAbsent
}
-- Format for both ephemeral and static public keys: Imported from
-- [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>]
-- ECPoint ::= OCTET STRING
-- ECParameters ::= CHOICE {
-- namedCurve CURVE.&id({NamedCurve})
-- commented out in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] implicitCurve NULL
-- commented out in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] specifiedCurve SpecifiedECDomain
-- commented out in [<a href="#ref-PKI-ALG" title=""Elliptic Curve Cryptography Subject Public Key Information"">PKI-ALG</a>] ...
-- }
-- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
-- Details for SpecifiedECDomain can be found in [<a href="#ref-X9.62" title=""Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)"">X9.62</a>].
-- Any future additions to this CHOICE should be coordinated
-- with ANSI X.9.
-- Format of KeyAgreeRecipientInfo ukm field when used with
-- ECMQV
MQVuserKeyingMaterial ::= SEQUENCE {
ephemeralPublicKey OriginatorPublicKey,
addedukm [0] EXPLICIT UserKeyingMaterial OPTIONAL
}
<span class="grey">Turner & Brown Informational [Page 54]</span>
<span id="page-55" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
-- 'SharedInfo' for input to KDF when using ECDH and ECMQV with
-- EnvelopedData, AuthenticatedData, or AuthEnvelopedData
ECC-CMS-SharedInfo ::= SEQUENCE {
keyInfo KeyWrapAlgorithm,
entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
suppPubInfo [2] EXPLICIT OCTET STRING
}
--
-- S/MIME CAPS for algorithms in this document
--
<span class="grey">Turner & Brown Informational [Page 55]</span>
<span id="page-56" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
SMimeCAPS SMIME-CAPS ::= {
-- mda-sha1.&smimeCaps |
-- mda-sha224.&smimeCaps |
-- mda-sha256.&smimeCaps |
-- mda-sha384.&smimeCaps |
-- mda-sha512.&smimeCaps |
-- sa-ecdsaWithSHA1.&smimeCaps |
-- sa-ecdsaWithSHA224.&smimeCaps |
-- sa-ecdsaWithSHA256.&smimeCaps |
-- sa-ecdsaWithSHA384.&smimeCaps |
-- sa-ecdsaWithSHA512.&smimeCaps |
kaa-dhSinglePass-stdDH-sha1kdf-scheme.&smimeCaps |
kaa-dhSinglePass-stdDH-sha224kdf-scheme.&smimeCaps |
kaa-dhSinglePass-stdDH-sha256kdf-scheme.&smimeCaps |
kaa-dhSinglePass-stdDH-sha384kdf-scheme.&smimeCaps |
kaa-dhSinglePass-stdDH-sha512kdf-scheme.&smimeCaps |
kaa-dhSinglePass-cofactorDH-sha1kdf-scheme.&smimeCaps |
kaa-dhSinglePass-cofactorDH-sha224kdf-scheme.&smimeCaps |
kaa-dhSinglePass-cofactorDH-sha256kdf-scheme.&smimeCaps |
kaa-dhSinglePass-cofactorDH-sha384kdf-scheme.&smimeCaps |
kaa-dhSinglePass-cofactorDH-sha512kdf-scheme.&smimeCaps |
kaa-mqvSinglePass-sha1kdf-scheme.&smimeCaps |
kaa-mqvSinglePass-sha224kdf-scheme.&smimeCaps |
kaa-mqvSinglePass-sha256kdf-scheme.&smimeCaps |
kaa-mqvSinglePass-sha384kdf-scheme.&smimeCaps |
kaa-mqvSinglePass-sha512kdf-scheme.&smimeCaps |
-- kwa-3des.&smimeCaps |
-- kwa-aes128.&smimeCaps |
-- kwa-aes192.&smimeCaps |
-- kwa-aes256.&smimeCaps |
-- cea-3DES-cbc.&smimeCaps |
-- cea-aes128-cbc.&smimeCaps |
-- cea-aes192-cbc.&smimeCaps |
-- cea-aes256-cbc.&smimeCaps |
-- cea-aes128-ccm.&smimeCaps |
-- cea-aes192-ccm.&smimeCaps |
-- cea-aes256-ccm.&smimeCaps |
-- cea-aes128-gcm.&smimeCaps |
-- cea-aes192-gcm.&smimeCaps |
-- cea-aes256-gcm.&smimeCaps |
-- maca-hMAC-SHA1.&smimeCaps |
maca-hMAC-SHA224.&smimeCaps |
maca-hMAC-SHA256.&smimeCaps |
maca-hMAC-SHA384.&smimeCaps |
maca-hMAC-SHA512.&smimeCaps,
...
}
<span class="grey">Turner & Brown Informational [Page 56]</span>
<span id="page-57" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
cap-kaa-dhSinglePass-stdDH-sha1kdf-scheme SMIME-CAPS ::= {
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-stdDH-sha1kdf-scheme
}
cap-kaa-dhSinglePass-stdDH-sha224kdf-scheme SMIME-CAPS ::= {
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-stdDH-sha224kdf-scheme
}
cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme SMIME-CAPS ::= {
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-stdDH-sha256kdf-scheme
}
cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme SMIME-CAPS ::= {
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-stdDH-sha384kdf-scheme
}
cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme SMIME-CAPS ::= {
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-stdDH-sha512kdf-scheme
}
cap-kaa-dhSinglePass-cofactorDH-sha1kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-cofactorDH-sha1kdf-scheme
}
cap-kaa-dhSinglePass-cofactorDH-sha224kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-cofactorDH-sha224kdf-scheme
}
cap-kaa-dhSinglePass-cofactorDH-sha256kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-cofactorDH-sha256kdf-scheme
}
cap-kaa-dhSinglePass-cofactorDH-sha384kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-cofactorDH-sha384kdf-scheme
}
<span class="grey">Turner & Brown Informational [Page 57]</span>
<span id="page-58" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
cap-kaa-dhSinglePass-cofactorDH-sha512kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY dhSinglePass-cofactorDH-sha512kdf-scheme
}
cap-kaa-mqvSinglePass-sha1kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY mqvSinglePass-sha1kdf-scheme
}
cap-kaa-mqvSinglePass-sha224kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY mqvSinglePass-sha224kdf-scheme
}
cap-kaa-mqvSinglePass-sha256kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY mqvSinglePass-sha256kdf-scheme
}
cap-kaa-mqvSinglePass-sha384kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY mqvSinglePass-sha384kdf-scheme
}
cap-kaa-mqvSinglePass-sha512kdf-scheme SMIME-CAPS ::={
TYPE KeyWrapAlgorithm
IDENTIFIED BY mqvSinglePass-sha512kdf-scheme
}
cap-hMAC-SHA224 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA224 }
cap-hMAC-SHA256 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA256 }
cap-hMAC-SHA384 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA384 }
cap-hMAC-SHA512 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA512 }
END
<span class="grey">Turner & Brown Informational [Page 58]</span>
<span id="page-59" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Changes since <a href="./rfc3278">RFC 3278</a></span>
The following summarizes the changes:
- Abstract: The basis of the document was changed to refer to NIST
FIPS 186-3 and SP800-56A. However, to maintain backwards
compatibility the Key Derivation Function from ANSI/SEC1 is
retained.
- <a href="#section-1">Section 1</a>: A bullet was added to address AuthEnvelopedData.
- <a href="#section-2.1">Section 2.1</a>: A sentence was added to indicate FIPS180-3 is used
with ECDSA. Replaced reference to ANSI X9.62 with FIPS186-3.
- <a href="#section-2.1.1">Section 2.1.1</a>: The permitted digest algorithms were expanded from
SHA-1 to SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.
- <a href="#section-2.1.2">Section 2.1.2</a> and 2.1.3: The bullet addressing integer "e" was
deleted.
- <a href="#section-3">Section 3</a>: Added explanation of why static-static ECDH is not
included.
- <a href="#section-3.1">Section 3.1</a>: The reference for DH was changed from <a href="./rfc3852">RFC 3852</a> to <a href="./rfc3370">RFC</a>
<a href="./rfc3370">3370</a>. Provided text to indicate fields of EnvelopedData are as in
CMS.
- <a href="#section-3.1.1">Section 3.1.1</a>: The text was updated to include description of all
KeyAgreeRecipientInfo fields. Parameters for id-ecPublicKey field
changed from NULL to absent or ECParameter. Additional information
about ukm was added.
- <a href="#section-3.2">Section 3.2</a>: The sentence describing the advantages of 1-Pass ECMQV
was rewritten.
- <a href="#section-3.2.1">Section 3.2.1</a>: The text was updated to include description of all
fields. Parameters for id-ecPublicKey field changed from NULL to
absent or ECParameters.
- Sections <a href="#section-3.2.2">3.2.2</a> and <a href="#section-4.1.2">4.1.2</a>: The re-use of ephemeral keys paragraph
was reworded.
- <a href="#section-4.1">Section 4.1</a>: The sentences describing the advantages of 1-Pass
ECMQV was moved to <a href="#section-4">Section 4</a>.
- <a href="#section-4.1.2">Section 4.1.2</a>: The note about the attack was moved to <a href="#section-4">Section 4</a>.
<span class="grey">Turner & Brown Informational [Page 59]</span>
<span id="page-60" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
- <a href="#section-4.2">Section 4.2</a>: This section was added to address AuthEnvelopedData
with ECMQV.
- <a href="#section-5">Section 5</a>: This section was moved to <a href="#section-8">Section 8</a>. The 1st paragraph
was modified to recommend both SignedData and EnvelopedData. The
requirements were updated for hash algorithms and recommendations
for matching curves and hash algorithms. Also, the requirements
were expanded to indicate which ECDH and ECMQV variants, key wrap
algorithms, and content encryption algorithms are required for each
of the content types used in this document. The permitted digest
algorithms used in KDFs were expanded from SHA-1 to SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512.
- <a href="#section-6">Section 6</a> (formerly 7): This section was updated to allow for
SMIMECapabilities to be present in certificates. The S/MIME
capabilities for ECDSA with SHA-224, SHA-256, SHA-384, and SHA-512
were added to the list of S/MIME Capabilities. Also, updated to
include S/MIME capabilities for ECDH and ECMQV using the SHA-224,
SHA-256, SHA-384, and SHA-512 algorithms as the KDF.
- <a href="#section-7.1">Section 7.1</a> (formerly 8.1): Added sub-sections for digest,
signature, originator public key, key agreement, content
encryption, key wrap, and message authentication code algorithms.
Pointed to algorithms and parameters in appropriate documents for:
SHA-224, SHA-256, SHA-384, and SHA-512 as well as SHA-224, SHA-256,
SHA-384, and SHA-512 with ECDSA. Also, added algorithm identifiers
for ECDH std, ECDH cofactor, and ECMQV with SHA-224, SHA-256,
SHA-384, and SHA-512 algorithms as the KDF. Changed id-ecPublicKey
parameters to be absent, NULL, or ECParameters, and if present the
originator's ECParameters must match the recipient's ECParameters.
- <a href="#section-7.2">Section 7.2</a> (formerly 8.2): Updated to include AuthEnvelopedData.
Also, added text to address support requirement for compressed,
uncompressed, and hybrid keys; changed pointers from ANSI X9.61 to
PKIX (where ECDSA-Sig-Value is imported); changed pointers from
SECG to NIST specs; and updated example of suppPubInfo to be
AES-256. keyInfo's parameters changed from NULL to any associated
parameters (AES wraps have absent parameters).
- <a href="#section-9">Section 9</a>: Replaced text, which was a summary paragraph, with an
updated security considerations section. Paragraph referring to
definitions of SHA-224, SHA-256, SHA-384, and SHA-512 is deleted.
- Updated references.
- Added ASN.1 modules.
- Updated acknowledgements section.
<span class="grey">Turner & Brown Informational [Page 60]</span>
<span id="page-61" ></span>
<span class="grey"><a href="./rfc5753">RFC 5753</a> Use of ECC Algorithms in CMS January 2010</span>
Acknowledgements
The methods described in this document are based on work done by the
ANSI X9F1 working group. The authors wish to extend their thanks to
ANSI X9F1 for their assistance. The authors also wish to thank Peter
de Rooij for his patient assistance. The technical comments of
Francois Rousseau were valuable contributions.
Many thanks go out to the other authors of <a href="./rfc3278">RFC 3278</a>: Simon Blake-
Wilson and Paul Lambert. Without <a href="./rfc3278">RFC 3278</a>, this version wouldn't
exist.
The authors also wish to thank Alfred Hoenes, Jonathan Herzog, Paul
Hoffman, Russ Housley, and Jim Schaad for their valuable input.
Authors' Addresses
Sean Turner
IECA, Inc.
3057 Nutley Street, Suite 106
Fairfax, VA 22031
USA
EMail: [email protected]
Daniel R. L. Brown
Certicom Corp
5520 Explorer Drive #400
Mississauga, ON L4W 5L1
Canada
EMail: [email protected]
Turner & Brown Informational [Page 61]
Annotations
Select text to annotate