5990
PROPOSED STANDARD

Use of the RSA-KEM Key Transport Algorithm in the Cryptographic Message Syntax (CMS) (Obsoleted)

Authors: J. Randall, B. Kaliski, J. Brainard, S. Turner
Date: September 2010
Area: sec
Working Group: smime
Stream: IETF
Obsoleted by: RFC 9690

Abstract

The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward) mechanism for transporting keying data to a recipient using the recipient's RSA public key. ("KEM" stands for "key encapsulation mechanism".) This document specifies the conventions for using the RSA-KEM Key Transport Algorithm with the Cryptographic Message Syntax (CMS). The ASN.1 syntax is aligned with an expected forthcoming change to American National Standard (ANS) X9.44.

RFC 5990: Use of the RSA-KEM Key Transport Algorithm in the Cryptographic Message Syntax (CMS) [RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

Obsoleted by: 9690 PROPOSED STANDARD
Errata Exist
Internet Engineering Task Force (IETF)                        J. Randall
Request for Comments: 5990                            Randall Consulting
Category: Standards Track                                     B. Kaliski
ISSN: 2070-1721                                                      EMC
                                                             J. Brainard
                                                                     RSA
                                                               S. Turner
                                                                    IECA
                                                          September 2010


               <span class="h1">Use of the RSA-KEM Key Transport Algorithm</span>
               <span class="h1">in the Cryptographic Message Syntax (CMS)</span>

Abstract

   The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
   mechanism for transporting keying data to a recipient using the
   recipient's RSA public key.  ("KEM" stands for "key encapsulation
   mechanism".)  This document specifies the conventions for using the
   RSA-KEM Key Transport Algorithm with the Cryptographic Message Syntax
   (CMS).  The ASN.1 syntax is aligned with an expected forthcoming
   change to American National Standard (ANS) X9.44.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   <a href="https://www.rfc-editor.org/info/rfc5990">http://www.rfc-editor.org/info/rfc5990</a>.














<span class="grey">Randall, et al.              Standards Track                    [Page 1]</span>

<span id="page-2" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   <a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
      <a href="#section-1.1">1.1</a>. Conventions Used in This Document ..........................<a href="#page-4">4</a>
   <a href="#section-2">2</a>. Use in CMS ......................................................<a href="#page-4">4</a>
      <a href="#section-2.1">2.1</a>. Underlying Components ......................................<a href="#page-4">4</a>
      <a href="#section-2.2">2.2</a>. RecipientInfo Conventions ..................................<a href="#page-5">5</a>
      <a href="#section-2.3">2.3</a>. Certificate Conventions ....................................<a href="#page-5">5</a>
      <a href="#section-2.4">2.4</a>. SMIMECapabilities Attribute Conventions ....................<a href="#page-6">6</a>
   <a href="#section-3">3</a>. Security Considerations .........................................<a href="#page-7">7</a>
   <a href="#section-4">4</a>. IANA Considerations .............................................<a href="#page-9">9</a>
   <a href="#section-5">5</a>. Acknowledgements ................................................<a href="#page-9">9</a>
   <a href="#section-6">6</a>. References .....................................................<a href="#page-10">10</a>
      <a href="#section-6.1">6.1</a>. Normative References ......................................<a href="#page-10">10</a>
      <a href="#section-6.2">6.2</a>. Informative References ....................................<a href="#page-11">11</a>
   <a href="#appendix-A">Appendix A</a>.  RSA-KEM Key Transport Algorithm ......................<a href="#page-12">12</a>
      <a href="#appendix-A.1">A.1</a>.  Underlying Components ....................................<a href="#page-12">12</a>
      <a href="#appendix-A.2">A.2</a>.  Sender's Operations ......................................<a href="#page-12">12</a>
      <a href="#appendix-A.3">A.3</a>.  Recipient's Operations ...................................<a href="#page-13">13</a>
   <a href="#appendix-B">Appendix B</a>.  ASN.1 Syntax .........................................<a href="#page-15">15</a>
      <a href="#appendix-B.1">B.1</a>.  RSA-KEM Key Transport Algorithm ..........................<a href="#page-16">16</a>
      <a href="#appendix-B.2">B.2</a>.  Selected Underlying Components ...........................<a href="#page-18">18</a>
         <a href="#appendix-B.2.1">B.2.1</a>.  Key Derivation Functions ............................<a href="#page-18">18</a>
         <a href="#appendix-B.2.2">B.2.2</a>.  Symmetric Key-Wrapping Schemes ......................<a href="#page-19">19</a>
      <a href="#appendix-B.3">B.3</a>.  ASN.1 Module .............................................<a href="#page-20">20</a>
      <a href="#appendix-B.4">B.4</a>.  Examples .................................................<a href="#page-25">25</a>










<span class="grey">Randall, et al.              Standards Track                    [Page 2]</span>

<span id="page-3" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>

   The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
   mechanism for transporting keying data to a recipient using the
   recipient's RSA public key.

   Most previous key transport algorithms based on the RSA public-key
   cryptosystem (e.g., the popular PKCS #1 v1.5 algorithm [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>]) have
   the following general form:

   1. Format or "pad" the keying data to obtain an integer m.

   2. Encrypt the integer m with the recipient's RSA public key:

         c = m^e mod n

   3. Output c as the encrypted keying data.

   The RSA-KEM Key Transport Algorithm takes a different approach that
   provides higher security assurance, by encrypting a _random_ integer
   with the recipient's public key, and using a symmetric key-wrapping
   scheme to encrypt the keying data.  It has the following form:

   1. Generate a random integer z between 0 and n-1.

   2. Encrypt the integer z with the recipient's RSA public key:

         c = z^e mod n

   3. Derive a key-encrypting key KEK from the integer z.

   4. Wrap the keying data using KEK to obtain wrapped keying data WK.

   5. Output c and WK as the encrypted keying data.

   This different approach provides higher security assurance because
   (a) the input to the underlying RSA operation is effectively a random
   integer between 0 and n-1, where n is the RSA modulus, so it does not
   have any structure that could be exploited by an adversary, and
   (b) the input is independent of the keying data so the result of the
   RSA decryption operation is not directly available to an adversary.
   As a result, the algorithm enjoys a "tight" security proof in the
   random oracle model.  (In other padding schemes, such as PKCS #1
   v1.5, the input has structure and/or depends on the keying data, and
   the provable security assurances are not as strong.)  The approach is
   also architecturally convenient because the public-key operations are





<span class="grey">Randall, et al.              Standards Track                    [Page 3]</span>

<span id="page-4" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   separate from the symmetric operations on the keying data.  Another
   benefit is that the length of the keying data is bounded only by the
   symmetric key-wrapping scheme, not the size of the RSA modulus.

   The RSA-KEM Key Transport Algorithm in various forms is being adopted
   in several draft standards as well as in American National Standard
   (ANS) X9.44 [<a href="#ref-ANS-X9.44">ANS-X9.44</a>].  It has also been recommended by the New
   European Schemes for Signatures, Integrity, and Encryption (NESSIE)
   project [<a href="#ref-NESSIE">NESSIE</a>].  Originally, [<a href="#ref-ANS-X9.44">ANS-X9.44</a>] specified a different
   object identifier to identify the RSA-KEM Key Transport Algorithm.
   [<a href="#ref-ANS-X9.44">ANS-X9.44</a>] used id-ac-generic-hybrid, while this document uses
   id-rsa-kem.  These OIDs are used in the KeyTransportInfo field to
   indicate the key encryption algorithm, in certificates to allow
   recipients to restrict their public keys for use with RSA-KEM only,
   and in SMIME Capability attributes to allow recipients to advertise
   their support for RSA-KEM.  Legacy implementations that wish to
   interoperate with [<a href="#ref-ANS-X9.44">ANS-X9.44</a>] should consult that specification for
   more information on id-ac-generic-hybrid.

   For completeness, a specification of the algorithm is given in
   <a href="#appendix-A">Appendix A</a> of this document; ASN.1 syntax is given in <a href="#appendix-B">Appendix B</a>.

      NOTE: The term "KEM" stands for "key encapsulation mechanism" and
      refers to the first three steps of the process above.  The
      formalization of key transport algorithms (or more generally,
      asymmetric encryption schemes) in terms of key encapsulation
      mechanisms is described further in research by Victor Shoup
      leading to the development of the ISO/IEC 18033-2 standard
      [<a href="#ref-SHOUP" title="December 20">SHOUP</a>].

<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>.  Conventions Used in This Document</span>

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="#ref-STDWORDS" title=""Key words for use in RFCs to Indicate Requirement Levels"">STDWORDS</a>].

<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Use in CMS</span>

   The RSA-KEM Key Transport Algorithm MAY be employed for one or more
   recipients in the CMS enveloped-data content type (Section 6 of
   [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]), where the keying data processed by the algorithm is the CMS
   content-encryption key.

<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>.  Underlying Components</span>

   A CMS implementation that supports the RSA-KEM Key Transport
   Algorithm MUST support at least the following underlying components:




<span class="grey">Randall, et al.              Standards Track                    [Page 4]</span>

<span id="page-5" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   o  For the key derivation function, KDF3 (see [<a href="#ref-ANS-X9.44">ANS-X9.44</a>]) based on
      SHA-256 (see [<a href="#ref-FIPS-180-3">FIPS-180-3</a>]).  KDF3 is an instantiation of the
      Concatenation Key Derivation Function defined in [<a href="#ref-NIST-SP800-56A">NIST-SP800-56A</a>].

   o  For the key-wrapping scheme, AES-Wrap-128, i.e., the AES Key Wrap
      with a 128-bit key-encrypting key (see [<a href="#ref-AES-WRAP" title=""Advanced Encryption Standard (AES) Key Wrap Algorithm"">AES-WRAP</a>]).

   An implementation SHOULD also support KDF2 (see [<a href="#ref-ANS-X9.44">ANS-X9.44</a>]) based on
   SHA-1 (this function is also specified as the key derivation function
   in [<a href="#ref-ANS-X9.63">ANS-X9.63</a>]).  The Camellia key wrap algorithm (see [<a href="#ref-CAMELLIA" title=""Use of the Camellia Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CAMELLIA</a>])
   SHOULD be supported if Camellia is supported as a content-encryption
   cipher.  The Triple-DES Key Wrap (see [<a href="#ref-3DES-WRAP" title=""Triple-DES and RC2 Key Wrapping"">3DES-WRAP</a>]) SHOULD also be
   supported if Triple-DES is supported as a content-encryption cipher.

   It MAY support other underlying components.  When AES or Camellia is
   used, the data block size is 128 bits and the key size can be 128,
   192, or 256 bits, while Triple-DES requires a data block size of
   64 bits and a key size of 112 or 168 bits.

<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>.  RecipientInfo Conventions</span>

   When the RSA-KEM Key Transport Algorithm is employed for a recipient,
   the RecipientInfo alternative for that recipient MUST be
   KeyTransRecipientInfo.  The algorithm-specific fields of the
   KeyTransRecipientInfo value MUST have the following values:

   o  keyEncryptionAlgorithm.algorithm MUST be id-rsa-kem (see
      <a href="#appendix-B">Appendix B</a>);

   o  keyEncryptionAlgorithm.parameters MUST be a value of type
      GenericHybridParameters, identifying the RSA-KEM key encapsulation
      mechanism (see <a href="#appendix-B">Appendix B</a>);

   o  encryptedKey MUST be the encrypted keying data output by the
      algorithm, where the keying data is the content-encryption key
      (see <a href="#appendix-A">Appendix A</a>).

<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>.  Certificate Conventions</span>

   The conventions specified in this section augment <a href="./rfc5280">RFC 5280</a> [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].

   A recipient who employs the RSA-KEM Key Transport Algorithm MAY
   identify the public key in a certificate by the same
   AlgorithmIdentifier as for the PKCS #1 v1.5 algorithm, i.e., using
   the rsaEncryption object identifier [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>].  The fact that the user
   will accept RSA-KEM with this public key is not indicated by the use





<span class="grey">Randall, et al.              Standards Track                    [Page 5]</span>

<span id="page-6" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   of this identifier.  This MAY be signaled by the use of the
   appropriate SMIME Capabilities either in a message or in the
   certificate.

   If the recipient wishes only to employ the RSA-KEM Key Transport
   Algorithm with a given public key, the recipient MUST identify the
   public key in the certificate using the id-rsa-kem object identifier
   (see <a href="#appendix-B">Appendix B</a>).  When the id-rsa-kem algorithm identifier appears
   in the SubjectPublicKeyInfo algorithm field, the encoding SHALL omit
   the parameters field from AlgorithmIdentifier.  That is, the
   AlgorithmIdentifier SHALL be a SEQUENCE of one component, the object
   identifier id-rsa-kem.

   Regardless of the AlgorithmIdentifier used, the RSA public key is
   encoded in the same manner in the subject public key information.
   The RSA public key MUST be encoded using the type RSAPublicKey type:

      RSAPublicKey ::= SEQUENCE {
         modulus            INTEGER, -- n
         publicExponent     INTEGER  -- e
      }

   Here, the modulus is the modulus n, and publicExponent is the public
   exponent e.  The Distinguished Encoding Rules (DER)-encoded
   RSAPublicKey is carried in the subjectPublicKey BIT STRING within the
   subject public key information.

   The intended application for the key MAY be indicated in the key
   usage certificate extension (see [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>], Section 4.2.1.3).  If the
   keyUsage extension is present in a certificate that conveys an RSA
   public key with the id-rsa-kem object identifier as discussed above,
   then the key usage extension MUST contain the following value:

       keyEncipherment

   dataEncipherment SHOULD NOT be present.  That is, a key intended to
   be employed only with the RSA-KEM Key Transport Algorithm SHOULD NOT
   also be employed for data encryption or for authentication such as in
   signatures.  Good cryptographic practice employs a given RSA key pair
   in only one scheme.  This practice avoids the risk that vulnerability
   in one scheme may compromise the security of the other, and may be
   essential to maintain provable security.

<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>.  SMIMECapabilities Attribute Conventions</span>

   <a href="./rfc3851">RFC 3851</a> [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification"">MSG</a>], Section 2.5.2 defines the SMIMECapabilities signed
   attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to be
   used to specify a partial list of algorithms that the software



<span class="grey">Randall, et al.              Standards Track                    [Page 6]</span>

<span id="page-7" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   announcing the SMIMECapabilities can support.  When constructing a
   signedData object, compliant software MAY include the
   SMIMECapabilities signed attribute announcing that it supports the
   RSA-KEM Key Transport Algorithm.

   The SMIMECapability SEQUENCE representing the RSA-KEM Key Transport
   Algorithm MUST include the id-rsa-kem object identifier (see
   <a href="#appendix-B">Appendix B</a>) in the capabilityID field and MUST include a
   GenericHybridParameters value in the parameters field identifying the
   components with which the algorithm is to be employed.

   The DER encoding of a SMIMECapability SEQUENCE is the same as the DER
   encoding of an AlgorithmIdentifier.  Example DER encodings for
   typical sets of components are given in <a href="#appendix-B.4">Appendix B.4</a>.

<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  Security Considerations</span>

   The RSA-KEM Key Transport Algorithm should be considered for new CMS-
   based applications as a replacement for the widely implemented RSA
   encryption algorithm specified originally in PKCS #1 v1.5 (see
   [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>] and Section 4.2.1 of [<a href="#ref-CMSALGS" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMSALGS</a>]), which is vulnerable to
   chosen-ciphertext attacks.  The RSA Encryption Scheme - Optimal
   Asymmetric Encryption Padding (RSAES-OAEP) Key Transport Algorithm
   has also been proposed as a replacement (see [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>] and [<a href="#ref-CMS-OAEP" title=""Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message Syntax (CMS)"">CMS-OAEP</a>]).
   RSA-KEM has the advantage over RSAES-OAEP of a tighter security
   proof, but the disadvantage of slightly longer encrypted keying data.

   The security of the RSA-KEM Key Transport Algorithm described in this
   document can be shown to be tightly related to the difficulty of
   either solving the RSA problem or breaking the underlying symmetric
   key-wrapping scheme, if the underlying key derivation function is
   modeled as a random oracle, and assuming that the symmetric key-
   wrapping scheme satisfies the properties of a data encapsulation
   mechanism [<a href="#ref-SHOUP" title="December 20">SHOUP</a>].  While in practice a random-oracle result does not
   provide an actual security proof for any particular key derivation
   function, the result does provide assurance that the general
   construction is reasonable; a key derivation function would need to
   be particularly weak to lead to an attack that is not possible in the
   random oracle model.

   The RSA key size and the underlying components should be selected
   consistent with the desired symmetric security level for an
   application.  Several security levels have been identified in the
   NIST FIPS PUB 800-57 [<a href="#ref-NIST-GUIDELINE">NIST-GUIDELINE</a>].  For brevity, the first three
   levels are mentioned here:






<span class="grey">Randall, et al.              Standards Track                    [Page 7]</span>

<span id="page-8" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   o  80-bit security.  The RSA key size SHOULD be at least 1024 bits,
      the hash function underlying the KDF SHOULD be SHA-1 or above, and
      the symmetric key-wrapping scheme SHOULD be AES Key Wrap, Triple-
      DES Key Wrap, or Camellia Key Wrap.

   o  112-bit security.  The RSA key size SHOULD be at least 2048 bits,
      the hash function underlying the KDF SHOULD be SHA-224 or above,
      and the symmetric key-wrapping scheme SHOULD be AES Key Wrap,
      Triple-DES Key Wrap, or Camellia Key Wrap.

   o  128-bit security.  The RSA key size SHOULD be at least 3072 bits,
      the hash function underlying the KDF SHOULD be SHA-256 or above,
      and the symmetric key-wrapping scheme SHOULD be AES Key Wrap or
      Camellia Key Wrap.

   Note that the AES Key Wrap or Camellia Key Wrap MAY be used at all
   three of these levels; the use of AES or Camellia does not require a
   128-bit security level for other components.

   Implementations MUST protect the RSA private key and the content-
   encryption key.  Compromise of the RSA private key may result in the
   disclosure of all messages protected with that key.  Compromise of
   the content-encryption key may result in disclosure of the associated
   encrypted content.

   Additional considerations related to key management may be found in
   [<a href="#ref-NIST-GUIDELINE">NIST-GUIDELINE</a>].

   The security of the algorithm also depends on the strength of the
   random number generator, which SHOULD have a comparable security
   level.  For further discussion on random number generation, please
   see [<a href="#ref-RANDOM" title=""Randomness Requirements for Security"">RANDOM</a>].

   Implementations SHOULD NOT reveal information about intermediate
   values or calculations, whether by timing or other "side channels",
   or otherwise an opponent may be able to determine information about
   the keying data and/or the recipient's private key.  Although not all
   intermediate information may be useful to an opponent, it is
   preferable to conceal as much information as is practical, unless
   analysis specifically indicates that the information would not be
   useful.

   Generally, good cryptographic practice employs a given RSA key pair
   in only one scheme.  This practice avoids the risk that vulnerability
   in one scheme may compromise the security of the other, and may be
   essential to maintain provable security.  While RSA public keys have
   often been employed for multiple purposes such as key transport and
   digital signature without any known bad interactions, for increased



<span class="grey">Randall, et al.              Standards Track                    [Page 8]</span>

<span id="page-9" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   security assurance, such combined use of an RSA key pair is NOT
   RECOMMENDED in the future (unless the different schemes are
   specifically designed to be used together).

   Accordingly, an RSA key pair used for the RSA-KEM Key Transport
   Algorithm SHOULD NOT also be used for digital signatures.  (Indeed,
   the Accredited Standards Committee X9 (ASC X9) requires such a
   separation between key establishment key pairs and digital signature
   key pairs.)  Continuing this principle of key separation, a key pair
   used for the RSA-KEM Key Transport Algorithm SHOULD NOT be used with
   other key establishment schemes, or for data encryption, or with more
   than one set of underlying algorithm components.

   Parties MAY formalize the assurance that one another's
   implementations are correct through implementation validation, e.g.,
   NIST's Cryptographic Module Validation Program (CMVP).

<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  IANA Considerations</span>

   Within the CMS, algorithms are identified by object identifiers
   (OIDs).  With one exception, all of the OIDs used in this document
   were assigned in other IETF documents, in ISO/IEC standards
   documents, by the National Institute of Standards and Technology
   (NIST), and in Public-Key Cryptography Standards (PKCS) documents.
   The two exceptions are the ASN.1 module's identifier (see <a href="#appendix-B.3">Appendix</a>
   <a href="#appendix-B.3">B.3</a>) and id-rsa-kem that are both assigned in this document.  The
   module object identifiers are defined in an arc delegated by the
   former company RSA Data Security Inc. to the S/MIME Working Group.
   When the S/MIME Working Group closes, this arc and its registration
   procedures will be transferred to IANA.

<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Acknowledgements</span>

   This document is one part of a strategy to align algorithm standards
   produced by ASC X9, ISO/IEC JTC1 SC27, NIST, and the IETF.  We would
   like to thank the members of the ASC X9F1 working group for their
   contributions to drafts of ANS X9.44, which led to this
   specification.

   Our thanks to Russ Housley as well for his guidance and
   encouragement.  We also appreciate the helpful direction we've
   received from Blake Ramsdell and Jim Schaad in bringing this document
   to fruition.  A special thanks to Magnus Nystrom for his assistance
   on <a href="#appendix-B">Appendix B</a>.  Thanks also to Bob Griffin and John Linn for both
   editorial direction and procedural guidance.






<span class="grey">Randall, et al.              Standards Track                    [Page 9]</span>

<span id="page-10" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  References</span>

<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>.  Normative References</span>

   [<a id="ref-3DES-WRAP">3DES-WRAP</a>]       Housley, R., "Triple-DES and RC2 Key Wrapping",
                     <a href="./rfc3217">RFC 3217</a>, December 2001.

   [<a id="ref-AES-WRAP">AES-WRAP</a>]        Schaad, J. and R. Housley, "Advanced Encryption
                     Standard (AES) Key Wrap Algorithm", <a href="./rfc3394">RFC 3394</a>,
                     September 2002.

   [<a id="ref-ANS-X9.44">ANS-X9.44</a>]       ASC X9F1 Working Group.  American National Standard
                     X9.44: Public Key Cryptography for the Financial
                     Services Industry -- Key Establishment Using
                     Integer Factorization Cryptography.  2007.

   [<a id="ref-ANS-X9.63">ANS-X9.63</a>]       American National Standard X9.63-2002: Public Key
                     Cryptography for the Financial Services Industry:
                     Key Agreement and Key Transport Using Elliptic
                     Curve Cryptography.

   [<a id="ref-CAMELLIA">CAMELLIA</a>]        Moriai, S. and A. Kato, "Use of the Camellia
                     Encryption Algorithm in Cryptographic Message
                     Syntax (CMS)", <a href="./rfc3657">RFC 3657</a>, January 2004.

   [<a id="ref-CMS">CMS</a>]             Housley, R., "Cryptographic Message Syntax (CMS)",
                     <a href="./rfc5652">RFC 5652</a>, September 2009.

   [<a id="ref-CMSALGS">CMSALGS</a>]         Housley, R., "Cryptographic Message Syntax (CMS)
                     Algorithms", <a href="./rfc3370">RFC 3370</a>, August 2002.

   [<a id="ref-FIPS-180-3">FIPS-180-3</a>]      National Institute of Standards and Technology
                     (NIST).  FIPS 180-3: Secure Hash Standard.  October
                     2008.

   [<a id="ref-MSG">MSG</a>]             Ramsdell, B. and S. Turner, "Secure/Multipurpose
                     Internet Mail Extensions (S/MIME) Version 3.2
                     Message Specification", <a href="./rfc5751">RFC 5751</a>, January 2010.

   [<a id="ref-PROFILE">PROFILE</a>]         Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
                     Housley, R., and W. Polk, "Internet X.509 Public
                     Key Infrastructure Certificate and Certificate
                     Revocation List (CRL) Profile", <a href="./rfc5280">RFC 5280</a>, May 2008.

   [<a id="ref-STDWORDS">STDWORDS</a>]        Bradner, S., "Key words for use in RFCs to Indicate
                     Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.





<span class="grey">Randall, et al.              Standards Track                   [Page 10]</span>

<span id="page-11" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>.  Informative References</span>

   [<a id="ref-AES-WRAP-PAD">AES-WRAP-PAD</a>]    Housley, R. and M. Dworkin, "Advanced Encryption
                     Standard (AES) Key Wrap with Padding Algorithm",
                     <a href="./rfc5649">RFC 5649</a>, September 2009.

   [<a id="ref-CMS-OAEP">CMS-OAEP</a>]        Housley, R., "Use of the RSAES-OAEP Key Transport
                     Algorithm in Cryptographic Message Syntax (CMS)",
                     <a href="./rfc3560">RFC 3560</a>, July 2003.

   [<a id="ref-NESSIE">NESSIE</a>]          NESSIE Consortium.  Portfolio of Recommended
                     Cryptographic Primitives.  February 2003.
                     <a href="http://www.cryptonessie.org/">http://www.cryptonessie.org/</a>.

   [<a id="ref-NIST-GUIDELINE">NIST-GUIDELINE</a>]  National Institute of Standards and Technology.
                     Special Publication 800-57: Recommendation for Key
                     Management - Part 1: General (Revised).  March
                     2007.
                     <a href="http://csrc.nist.gov/publications/index.html">http://csrc.nist.gov/publications/index.html</a>.

   [<a id="ref-NIST-SP800-56A">NIST-SP800-56A</a>]  National Institute of Standards and Technology.
                     Special Publication 800-56A: Recommendation for
                     Pair-Wise Key Establishment Schemes Using Discrete
                     Logarithm Cryptography (Revised).  March 2007.
                     <a href="http://csrc.nist.gov/publications/index.html">http://csrc.nist.gov/publications/index.html</a>.

   [<a id="ref-PKCS1">PKCS1</a>]           Jonsson, J. and B. Kaliski, "Public-Key
                     Cryptography Standards (PKCS) #1: RSA Cryptography
                     Specifications Version 2.1", <a href="./rfc3447">RFC 3447</a>, February
                     2003.

   [<a id="ref-RANDOM">RANDOM</a>]          Eastlake 3rd, D., Schiller, J., and S. Crocker,
                     "Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>,
                     <a href="./rfc4086">RFC 4086</a>, June 2005.

   [<a id="ref-SHOUP">SHOUP</a>]           Shoup, V.  A Proposal for an ISO Standard for
                     Public Key Encryption.  Version 2.1, December 20,
                     2001.  <a href="http://eprint.iacr.org/2001/112">http://eprint.iacr.org/2001/112</a>.













<span class="grey">Randall, et al.              Standards Track                   [Page 11]</span>

<span id="page-12" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>.  RSA-KEM Key Transport Algorithm</span>

   The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
   mechanism for transporting keying data to a recipient using the
   recipient's RSA public key.

   With this type of algorithm, a sender encrypts the keying data using
   the recipient's public key to obtain encrypted keying data.  The
   recipient decrypts the encrypted keying data using the recipient's
   private key to recover the keying data.

<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>.  Underlying Components</span>

   The algorithm has the following underlying components:

   o  KDF, a key derivation function, which derives keying data of a
      specified length from a shared secret value;

   o  Wrap, a symmetric key-wrapping scheme, which encrypts keying Data
      using a key-encrypting key.

   In the following, kekLen denotes the length in bytes of the key-
   encrypting key for the underlying symmetric key-wrapping scheme.

   In this scheme, the length of the keying data to be transported MUST
   be among the lengths supported by the underlying symmetric key-
   wrapping scheme.  (Both the AES and Camellia Key Wraps, for instance,
   require the length of the keying data to be a multiple of 8 bytes,
   and at least 16 bytes.)  Usage and formatting of the keying data
   (e.g., parity adjustment for Triple-DES keys) is outside the scope of
   this algorithm.  With some key derivation functions, it is possible
   to include other information besides the shared secret value in the
   input to the function.  Also, with some symmetric key-wrapping
   schemes, it is possible to associate a label with the keying data.
   Such uses are outside the scope of this document, as they are not
   directly supported by CMS.

<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>.  Sender's Operations</span>

   Let (n,e) be the recipient's RSA public key (see [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>] for
   details), and let K be the keying data to be transported.

   Let nLen denote the length in bytes of the modulus n, i.e., the least
   integer such that 2^{8*nLen} > n.







<span class="grey">Randall, et al.              Standards Track                   [Page 12]</span>

<span id="page-13" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   The sender performs the following operations:

   1. Generate a random integer z between 0 and n-1 (see note), and
      convert z to a byte string Z of length nLen, most significant byte
      first:

         z = RandomInteger (0, n-1)

         Z = IntegerToString (z, nLen)

   2. Encrypt the random integer z using the recipient's public key
      (n,e), and convert the resulting integer c to a ciphertext C, a
      byte string of length nLen:

         c = z^e mod n

         C = IntegerToString (c, nLen)

   3. Derive a key-encrypting key KEK of length kekLen bytes from the
      byte string Z using the underlying key derivation function:

         KEK = KDF (Z, kekLen)

   4. Wrap the keying data K with the key-encrypting key KEK using the
      underlying key-wrapping scheme to obtain wrapped keying data WK:

         WK = Wrap (KEK, K)

   5. Concatenate the ciphertext C and the wrapped keying data WK to
      obtain the encrypted keying data EK:

         EK = C || WK

   6. Output the encrypted keying data EK.

   NOTE: The random integer z MUST be generated independently at random
   for different encryption operations, whether for the same or
   different recipients.

<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>.  Recipient's Operations</span>

   Let (n,d) be the recipient's RSA private key (see [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>]; other
   private key formats are allowed), and let EK be the encrypted keying
   data.

   Let nLen denote the length in bytes of the modulus n.





<span class="grey">Randall, et al.              Standards Track                   [Page 13]</span>

<span id="page-14" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   The recipient performs the following operations:

   1. Separate the encrypted keying data EK into a ciphertext C of
      length nLen bytes and wrapped keying data WK:

         C || WK = EK

      If the length of the encrypted keying data is less than nLen
      bytes, output "decryption error", and stop.

   2. Convert the ciphertext C to an integer c, most significant byte
      first.  Decrypt the integer c using the recipient's private key
      (n,d) to recover an integer z (see note):

         c = StringToInteger (C)

         z = c^d mod n

      If the integer c is not between 0 and n-1, output "decryption
      error", and stop.

   3. Convert the integer z to a byte string Z of length nLen, most
      significant byte first (see note):

         Z = IntegerToString (z, nLen)

   4. Derive a key-encrypting key KEK of length kekLen bytes from the
      byte string Z using the underlying key derivation function (see
      note):

         KEK = KDF (Z, kekLen)

   5. Unwrap the wrapped keying data WK with the key-encrypting key KEK
      using the underlying key-wrapping scheme to recover the keying
      data K:

         K = Unwrap (KEK, WK)

      If the unwrapping operation outputs an error, output "decryption
      error", and stop.

   6. Output the keying data K.

   NOTE: Implementations SHOULD NOT reveal information about the
   integer z and the string Z, nor about the calculation of the
   exponentiation in Step 2, the conversion in Step 3, or the key
   derivation in Step 4, whether by timing or other "side channels".
   The observable behavior of the implementation SHOULD be the same at



<span class="grey">Randall, et al.              Standards Track                   [Page 14]</span>

<span id="page-15" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   these steps for all ciphertexts C that are in range.  (For example,
   IntegerToString conversion should take the same amount of time
   regardless of the actual value of the integer z.)  The integer z, the
   string Z, and other intermediate results MUST be securely deleted
   when they are no longer needed.

<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>.  ASN.1 Syntax</span>

   The ASN.1 syntax for identifying the RSA-KEM Key Transport Algorithm
   is an extension of the syntax for the "generic hybrid cipher" in
   ANS X9.44 [<a href="#ref-ANS-X9.44">ANS-X9.44</a>].  The syntax for the scheme is given in
   <a href="#appendix-B.1">Appendix B.1</a>.  The syntax for selected underlying components
   including those mentioned above is given in <a href="#appendix-B.2">Appendix B.2</a>.

   The following object identifier prefixes are used in the definitions
   below:

      is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

      nistAlgorithm OID ::= {
         joint-iso-itu-t(2) country(16) us(840) organization(1)
         gov(101) csor(3) nistAlgorithm(4)
      }

      pkcs-1 OID ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
      }

      x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
        country(16) x9(840) x9Standards(9) x9-44(44) }

      x9-44-components OID ::= { x9-44 components(1) }

   NullParms is a more descriptive synonym for NULL when an algorithm
   identifier has null parameters:

      NullParms ::= NULL

   The material in this Appendix is based on ANS X9.44.












<span class="grey">Randall, et al.              Standards Track                   [Page 15]</span>

<span id="page-16" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>.  RSA-KEM Key Transport Algorithm</span>

   The object identifier for the RSA-KEM Key Transport Algorithm is
   id-rsa-kem, which is defined in this document as:

      id-rsa-kem OID ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) alg(3) 14
      }

   When id-rsa-kem is used in an AlgorithmIdentifier, the parameters
   MUST employ the GenericHybridParameters syntax.  The parameters MUST
   be absent when used in the SubjectPublicKeyInfo field.  The syntax
   for GenericHybridParameters is as follows:

      GenericHybridParameters ::= {
         kem  KeyEncapsulationMechanism,
         dem  DataEncapsulationMechanism
      }

   The fields of type GenericHybridParameters have the following
   meanings:

      o  kem identifies the underlying key encapsulation mechanism,
         which in this case is also denoted as RSA-KEM.

         The object identifier for RSA-KEM (as a key encapsulation
         mechanism) is id-kem-rsa as:

            id-kem-rsa OID ::= {
               is18033-2 key-encapsulation-mechanism(2) rsa(4)
            }

         The associated parameters for id-kem-rsa have type
         RsaKemParameters:

            RsaKemParameters ::= {
               keyDerivationFunction  KeyDerivationFunction,
               keyLength              KeyLength
            }











<span class="grey">Randall, et al.              Standards Track                   [Page 16]</span>

<span id="page-17" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


         The fields of type RsaKemParameters have the following
         meanings:

         *  keyDerivationFunction identifies the underlying key
            derivation function.  For alignment with ANS X9.44, it MUST
            be KDF2 or KDF3.  However, other key derivation functions
            MAY be used with CMS.  Please see <a href="#appendix-B.2.1">Appendix B.2.1</a> for the
            syntax for KDF2 and KDF3.

               KeyDerivationFunction ::=
                  AlgorithmIdentifier {{KDFAlgorithms}}

               KDFAlgorithms ALGORITHM ::= {
                  kdf2 | kdf3,
                  ...  -- implementations may define other methods
               }

         *  keyLength is the length in bytes of the key-encrypting key,
            which depends on the underlying symmetric key-wrapping
            scheme.

               KeyLength ::= INTEGER (1..MAX)

      o  dem identifies the underlying data encapsulation mechanism.
         For alignment with ANS X9.44, it MUST be an X9-approved
         symmetric key-wrapping scheme.  However, other symmetric key-
         wrapping schemes MAY be used with CMS.  Please see <a href="#appendix-B.2.2">Appendix</a>
         <a href="#appendix-B.2.2">B.2.2</a> for the syntax for the AES, Triple-DES, and Camellia Key
         Wraps.

            DataEncapsulationMechanism ::=
               AlgorithmIdentifier {{DEMAlgorithms}}

            DEMAlgorithms ALGORITHM ::= {
               X9-SymmetricKeyWrappingSchemes,
               Camellia-KeyWrappingSchemes,
               ...  -- implementations may define other methods
            }

            X9-SymmetricKeyWrappingSchemes ALGORITHM ::= {
               aes128-Wrap | aes192-Wrap | aes256-Wrap | tdes-Wrap,
               ...  -- allows for future expansion
            }

            Camellia-KeyWrappingSchemes ALGORITHM ::= {
               Camellia128-Wrap | Camellia192-Wrap | Camellia256-Wrap
            }




<span class="grey">Randall, et al.              Standards Track                   [Page 17]</span>

<span id="page-18" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>.  Selected Underlying Components</span>

<span class="h4"><a class="selflink" id="appendix-B.2.1" href="#appendix-B.2.1">B.2.1</a>.  Key Derivation Functions</span>

   The object identifier for KDF2 (see [<a href="#ref-ANS-X9.44">ANS-X9.44</a>]) is:

      id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

   The associated parameters identify the underlying hash function.  For
   alignment with ANS X9.44, the hash function MUST be an ASC
   X9-approved hash function.  However, other hash functions MAY be used
   with CMS.

      kdf2 ALGORITHM ::= { OID id-kdf-kdf2  PARMS KDF2-HashFunction }

      KDF2-HashFunction ::= AlgorithmIdentifier {{KDF2-HashFunctions}}

      KDF2-HashFunctions ALGORITHM ::= {
         X9-HashFunctions,
         ...  -- implementations may define other methods
      }

      X9-HashFunctions ALGORITHM ::= {
         sha1 | sha224 | sha256 | sha384 | sha512,
         ...  -- allows for future expansion
      }

   The object identifier for SHA-1 is:

      id-sha1 OID ::= {
         iso(1) identified-organization(3) oiw(14) secsig(3)
         algorithms(2) sha1(26)
      }

   The object identifiers for SHA-224, SHA-256, SHA-384, and SHA-512 are

      id-sha224 OID ::= { nistAlgorithm hashAlgs(2) sha224(4) }
      id-sha256 OID ::= { nistAlgorithm hashAlgs(2) sha256(1) }
      id-sha384 OID ::= { nistAlgorithm hashAlgs(2) sha384(2) }
      id-sha512 OID ::= { nistAlgorithm hashAlgs(2) sha512(3) }

   There has been some confusion over whether the various SHA object
   identifiers have a NULL parameter, or no associated parameters.  As
   also discussed in [<a href="#ref-PKCS1" title=""Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1"">PKCS1</a>], implementations SHOULD generate algorithm
   identifiers without parameters and MUST accept algorithm identifiers
   either without parameters, or with NULL parameters.





<span class="grey">Randall, et al.              Standards Track                   [Page 18]</span>

<span id="page-19" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


      sha1   ALGORITHM ::= { OID id-sha1   } -- NULLParms MUST be
      sha224 ALGORITHM ::= { OID id-sha224 } -- accepted for these
      sha256 ALGORITHM ::= { OID id-sha256 } -- OIDs
      sha384 ALGORITHM ::= { OID id-sha384 } -- ""
      sha512 ALGORITHM ::= { OID id-sha512 } -- ""

   The object identifier for KDF3 (see [<a href="#ref-ANS-X9.44">ANS-X9.44</a>]) is:

      id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

   The associated parameters identify the underlying hash function.  For
   alignment with the draft ANS X9.44, the hash function MUST be an ASC
   X9-approved hash function.  However, other hash functions MAY be used
   with CMS.

      kdf3 ALGORITHM ::= { OID id-kdf-kdf3  PARMS KDF3-HashFunction }

      KDF3-HashFunction ::= AlgorithmIdentifier { KDF3-HashFunctions }

      KDF3-HashFunctions ALGORITHM ::= {
         X9-HashFunctions,
         ...  -- implementations may define other methods
      }

<span class="h4"><a class="selflink" id="appendix-B.2.2" href="#appendix-B.2.2">B.2.2</a>.  Symmetric Key-Wrapping Schemes</span>

   The object identifiers for the AES Key Wrap depend on the size of the
   key-encrypting key.  There are three object identifiers (see
   [<a href="#ref-AES-WRAP" title=""Advanced Encryption Standard (AES) Key Wrap Algorithm"">AES-WRAP</a>]):

      id-aes128-Wrap OID ::= { nistAlgorithm aes(1) aes128-Wrap(5) }
      id-aes192-Wrap OID ::= { nistAlgorithm aes(1) aes192-Wrap(25) }
      id-aes256-Wrap OID ::= { nistAlgorithm aes(1) aes256-Wrap(45) }

   These object identifiers have no associated parameters.

      aes128-Wrap ALGORITHM ::= { OID id-aes128-Wrap }
      aes192-Wrap ALGORITHM ::= { OID id-aes192-Wrap }
      aes256-Wrap ALGORITHM ::= { OID id-aes256-Wrap }

   The object identifier for the Triple-DES Key Wrap (see
   [<a href="#ref-3DES-WRAP" title=""Triple-DES and RC2 Key Wrapping"">3DES-WRAP</a>]) is:

      id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
         smime(16) alg(3) 6
      }




<span class="grey">Randall, et al.              Standards Track                   [Page 19]</span>

<span id="page-20" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   This object identifier has a NULL parameter.

      tdes-Wrap ALGORITHM ::=
         { OID id-alg-CMS3DESwrap  PARMS NullParms }

   NOTE: ASC X9 has not yet incorporated AES Key Wrap with Padding
   [<a href="#ref-AES-WRAP-PAD" title=""Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm"">AES-WRAP-PAD</a>] into ANS X9.44.  When ASC X9.44 adds AES Key Wrap with
   Padding, this document will also be updated.

   The object identifiers for the Camellia Key Wrap depend on the size
   of the key-encrypting key.  There are three object identifiers:

      id-camellia128-Wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) key-wrap-algorithm(3)
           camellia128-wrap(2) }

      id-camellia192-Wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) key-wrap-algorithm(3)
           camellia192-wrap(3) }

      id-camellia256-Wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) key-wrap-algorithm(3)
           camellia256-wrap(4) }

   These object identifiers have no associated parameters.

      camellia128-Wrap ALGORITHM ::= { OID id-camellia128-Wrap }
      camellia192-Wrap ALGORITHM ::= { OID id-camellia192-Wrap }
      camellia256-Wrap ALGORITHM ::= { OID id-camellia256-Wrap }

<span class="h3"><a class="selflink" id="appendix-B.3" href="#appendix-B.3">B.3</a>.  ASN.1 Module</span>

   CMS-RSA-KEM
      { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
        pkcs-9(9) smime(16) modules(0) cms-rsa-kem(21) }

   DEFINITIONS ::=

   BEGIN

   -- EXPORTS ALL

   -- IMPORTS None

   -- Useful types and definitions



<span class="grey">Randall, et al.              Standards Track                   [Page 20]</span>

<span id="page-21" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   OID ::= OBJECT IDENTIFIER  -- alias

   -- Unless otherwise stated, if an object identifier has associated
   -- parameters (i.e., the PARMS element is specified), the
   -- parameters field shall be included in algorithm identifier
   -- values.  The parameters field shall be omitted if and only if
   -- the object identifier does not have associated parameters
   -- (i.e., the PARMS element is omitted), unless otherwise stated.

   ALGORITHM ::= CLASS {
      &id    OBJECT IDENTIFIER  UNIQUE,
      &Type  OPTIONAL
   }
   WITH SYNTAX { OID &id [PARMS &Type] }

   AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
      algorithm   ALGORITHM.&id( {IOSet} ),
      parameters  ALGORITHM.&Type( {IOSet}{@algorithm} ) OPTIONAL
   }

   NullParms ::= NULL

   -- ISO/IEC 18033-2 arc

   is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

   -- NIST algorithm arc

   nistAlgorithm OID ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      gov(101) csor(3) nistAlgorithm(4)
   }

   -- PKCS #1 arc

   pkcs-1 OID ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
   }

   -- RSA-KEM Key Transport Algorithm

   id-rsa-kem OID ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
      pkcs-9(9) smime(16) alg(3) 14
   }






<span class="grey">Randall, et al.              Standards Track                   [Page 21]</span>

<span id="page-22" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   GenericHybridParameters ::= SEQUENCE {
      kem  KeyEncapsulationMechanism,
      dem  DataEncapsulationMechanism
   }

   KeyEncapsulationMechanism ::= AlgorithmIdentifier {{KEMAlgorithms}}

   KEMAlgorithms ALGORITHM ::= { kem-rsa, ... }

   kem-rsa ALGORITHM ::= { OID id-kem-rsa PARMS RsaKemParameters }

   id-kem-rsa OID ::= {
      is18033-2 key-encapsulation-mechanism(2) rsa(4)
   }

   RsaKemParameters ::= SEQUENCE {
      keyDerivationFunction  KeyDerivationFunction,
      keyLength              KeyLength
   }

   KeyDerivationFunction ::= AlgorithmIdentifier {{KDFAlgorithms}}

   KDFAlgorithms ALGORITHM ::= {
      kdf2 | kdf3,
      ...  -- implementations may define other methods
   }

   KeyLength ::= INTEGER (1..MAX)

   DataEncapsulationMechanism ::= AlgorithmIdentifier {{DEMAlgorithms}}

   DEMAlgorithms ALGORITHM ::= {
      X9-SymmetricKeyWrappingSchemes |
      Camellia-KeyWrappingSchemes,
      ...  -- implementations may define other methods
   }

   X9-SymmetricKeyWrappingSchemes ALGORITHM ::= {
      aes128-Wrap | aes192-Wrap | aes256-Wrap | tdes-Wrap,
      ...  -- allows for future expansion
   }

   X9-SymmetricKeyWrappingScheme ::=
               AlgorithmIdentifier {{ X9-SymmetricKeyWrappingSchemes }}







<span class="grey">Randall, et al.              Standards Track                   [Page 22]</span>

<span id="page-23" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   Camellia-KeyWrappingSchemes ALGORITHM ::= {
      camellia128-Wrap | camellia192-Wrap | camellia256-Wrap,
      ... -- allows for future expansion
   }

   Camellia-KeyWrappingScheme ::=
                  AlgorithmIdentifier {{ Camellia-KeyWrappingSchemes }}

   -- Key Derivation Functions

   id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

   -- Base arc

   x9-44 OID ::= {
      iso(1) identified-organization(3) tc68(133) country(16) x9(840)
      x9Standards(9) x9-44(44)
   }

   x9-44-components OID ::= { x9-44 components(1) }

   kdf2 ALGORITHM ::= { OID id-kdf-kdf2  PARMS KDF2-HashFunction }

   KDF2-HashFunction ::= AlgorithmIdentifier {{ KDF2-HashFunctions }}

   KDF2-HashFunctions ALGORITHM ::= {
      X9-HashFunctions,
      ...  -- implementations may define other methods
   }

   id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

   kdf3 ALGORITHM ::= { OID id-kdf-kdf3  PARMS KDF3-HashFunction }

   KDF3-HashFunction  ::= AlgorithmIdentifier {{ KDF3-HashFunctions }}

   KDF3-HashFunctions ALGORITHM ::= {
      X9-HashFunctions,
      ...  -- implementations may define other methods
   }

   -- Hash Functions

   X9-HashFunctions ALGORITHM ::= {
      sha1 | sha224 | sha256 | sha384 | sha512,
      ...  -- allows for future expansion
   }




<span class="grey">Randall, et al.              Standards Track                   [Page 23]</span>

<span id="page-24" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   id-sha1 OID ::= {
      iso(1) identified-organization(3) oiw(14) secsig(3)
      algorithms(2) sha1(26)
   }

   id-sha224 OID ::= { nistAlgorithm hashAlgs(2) sha224(4) }

   id-sha256 OID ::= { nistAlgorithm hashAlgs(2) sha256(1) }

   id-sha384 OID ::= { nistAlgorithm hashAlgs(2) sha384(2) }

   id-sha512 OID ::= { nistAlgorithm hashAlgs(2) sha512(3) }

   sha1   ALGORITHM ::= { OID id-sha1    } -- NullParms MUST be

   sha224 ALGORITHM ::= { OID id-sha224  } -- accepted for these

   sha256 ALGORITHM ::= { OID id-sha256  } -- OIDs

   sha384 ALGORITHM ::= { OID id-sha384  } -- ""

   sha512 ALGORITHM ::= { OID id-sha512  } -- ""

   -- Symmetric Key-Wrapping Schemes

   id-aes128-Wrap OID ::= { nistAlgorithm aes(1) aes128-Wrap(5)  }

   id-aes192-Wrap OID ::= { nistAlgorithm aes(1) aes192-Wrap(25) }

   id-aes256-Wrap OID ::= { nistAlgorithm aes(1) aes256-Wrap(45) }

   aes128-Wrap ALGORITHM ::= { OID id-aes128-Wrap }

   aes192-Wrap ALGORITHM ::= { OID id-aes192-Wrap }

   aes256-Wrap ALGORITHM ::= { OID id-aes256-Wrap }

   id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) alg(3) 6
   }

   tdes-Wrap ALGORITHM ::= { OID id-alg-CMS3DESwrap  PARMS NullParms }

   id-camellia128-Wrap OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) key-wrap-algorithm(3)
        camellia128-wrap(2) }



<span class="grey">Randall, et al.              Standards Track                   [Page 24]</span>

<span id="page-25" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   id-camellia192-Wrap OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) key-wrap-algorithm(3)
        camellia192-wrap(3) }

   id-camellia256-Wrap OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) key-wrap-algorithm(3)
        camellia256-wrap(4) }

   camellia128-Wrap ALGORITHM ::= { OID id-camellia128-Wrap }

   camellia192-Wrap ALGORITHM ::= { OID id-camellia192-Wrap }

   camellia256-Wrap ALGORITHM ::= { OID id-camellia256-Wrap }

   END

<span class="h3"><a class="selflink" id="appendix-B.4" href="#appendix-B.4">B.4</a>.  Examples</span>

   As an example, if the key derivation function is KDF3 based on
   SHA-256 and the symmetric key-wrapping scheme is the AES Key Wrap
   with a 128-bit KEK, the AlgorithmIdentifier for the RSA-KEM Key
   Transport Algorithm will have the following value:

   SEQUENCE {
      id-rsa-kem,                                   -- RSA-KEM cipher
      SEQUENCE {                           -- GenericHybridParameters
         SEQUENCE {                    -- key encapsulation mechanism
            id-kem-rsa,                                    -- RSA-KEM
            SEQUENCE {                            -- RsaKemParameters
               SEQUENCE {                  -- key derivation function
                  id-kdf-kdf3,                                -- KDF3
                  SEQUENCE {                     -- KDF3-HashFunction
                     id-sha256  -- SHA-256; no parameters (preferred)
                  },
               16                              -- KEK length in bytes
               },
         SEQUENCE {                   -- data encapsulation mechanism
            id-aes128-Wrap             -- AES-128 Wrap; no parameters
         }
      }
   }








<span class="grey">Randall, et al.              Standards Track                   [Page 25]</span>

<span id="page-26" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


   This AlgorithmIdentifier value has the following DER encoding:

   30 47
     06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e           -- id-rsa-kem
     30 38
        30 29
           06 07 28 81 8c 71 02 02 04                 -- id-kem-rsa
           30 1e
              30 19
                 06 0a 2b 81 05 10 86 48 09 2c 01 02  -- id-kdf-kdf3
                 30 0b
                    06 09 60 86 48 01 65 03 04 02 01  -- id-sha256
                    02 01 10                          -- 16 bytes
         30 0b
            06 09 60 86 48 01 65 03 04 01 05         -- id-aes128-Wrap

   The DER encodings for other typical sets of underlying components are
   as follows:

   o  KDF3 based on SHA-384, AES Key Wrap with a 192-bit KEK

         30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
         38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
         06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
         60 86 48 01 65 03 04 02 02 02 01 18 30 0b 06 09
         60 86 48 01 65 03 04 01 19

   o  KDF3 based on SHA-512, AES Key Wrap with a 256-bit KEK

         30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
         38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
         06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
         60 86 48 01 65 03 04 02 03 02 01 20 30 0b 06 09
         60 86 48 01 65 03 04 01 2d

   o  KDF2 based on SHA-1, Triple-DES Key Wrap with a 128-bit KEK (two-
      key Triple-DES)

         30 45 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
         36 30 25 06 07 28 81 8c 71 02 02 04 30 1a 30 15
         06 0a 2b 81 05 10 86 48 09 2c 01 01 30 07 06 05
         2b 0e 03 02 1a 02 01 10 30 0d 06 0b 2a 86 48 86
         f7 0d 01 09 10 03 06








<span class="grey">Randall, et al.              Standards Track                   [Page 26]</span>

<span id="page-27" ></span>
<span class="grey"><a href="./rfc5990">RFC 5990</a>                  Use of RSA-KEM in CMS           September 2010</span>


Authors' Addresses

   James Randall
   Randall Consulting
   55 Sandpiper Drive
   Dover, NH  03820
   USA

   EMail: [email protected]


   Burt Kaliski
   EMC
   176 South Street
   Hopkinton, MA  01748
   USA

   EMail: [email protected]


   John Brainard
   RSA, The Security Division of EMC
   174 Middlesex Turnpike
   Bedford, MA  01730
   USA

   EMail: [email protected]


   Sean Turner
   IECA, Inc.
   3057 Nutley Street, Suite 106
   Fairfax, VA  22031
   USA

   EMail: [email protected]















Randall, et al.              Standards Track                   [Page 27]

Additional Resources