8532
PROPOSED STANDARD

Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications

Authors: D. Kumar, Z. Wang, Q. Wu, R. Rahman, S. Raghavan
Date: April 2019
Area: ops
Working Group: lime
Stream: IETF

Abstract

This document presents a base YANG Data model for the management of Operations, Administration, and Maintenance (OAM) protocols that use connectionless communications. The data model is defined using the YANG data modeling language, as specified in RFC 7950. It provides a technology-independent abstraction of key OAM constructs for OAM protocols that use connectionless communication. The base model presented here can be extended to include technology-specific details.

There are two key benefits of this approach: First, it leads to uniformity between OAM protocols. Second, it supports both nested OAM workflows (i.e., performing OAM functions at the same level or different levels through a unified interface) as well as interactive OAM workflows (i.e., performing OAM functions at the same level through a unified interface).

RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications [RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

PROPOSED STANDARD
Errata Exist
Internet Engineering Task Force (IETF)                          D. Kumar
Request for Comments: 8532                                         Cisco
Category: Standards Track                                        M. Wang
ISSN: 2070-1721                                               Q. Wu, Ed.
                                                                  Huawei
                                                               R. Rahman
                                                             S. Raghavan
                                                                   Cisco
                                                              April 2019


             <span class="h1">Generic YANG Data Model for the Management of</span>
      <span class="h1">Operations, Administration, and Maintenance (OAM) Protocols</span>
                 <span class="h1">That Use Connectionless Communications</span>

Abstract

   This document presents a base YANG Data model for the management of
   Operations, Administration, and Maintenance (OAM) protocols that use
   connectionless communications.  The data model is defined using the
   YANG data modeling language, as specified in <a href="./rfc7950">RFC 7950</a>.  It provides a
   technology-independent abstraction of key OAM constructs for OAM
   protocols that use connectionless communication.  The base model
   presented here can be extended to include technology-specific
   details.

   There are two key benefits of this approach: First, it leads to
   uniformity between OAM protocols.  Second, it supports both nested
   OAM workflows (i.e., performing OAM functions at the same level or
   different levels through a unified interface) as well as interactive
   OAM workflows (i.e., performing OAM functions at the same level
   through a unified interface).

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   <a href="https://www.rfc-editor.org/info/rfc8532">https://www.rfc-editor.org/info/rfc8532</a>.





<span class="grey">Kumar, et al.                Standards Track                    [Page 1]</span>

<span id="page-2" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   <a href="#section-1">1</a>.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   <a href="#page-3">3</a>
   <a href="#section-2">2</a>.  Conventions Used in This Document . . . . . . . . . . . . . .   <a href="#page-4">4</a>
     <a href="#section-2.1">2.1</a>.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   <a href="#page-4">4</a>
     <a href="#section-2.2">2.2</a>.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   <a href="#page-5">5</a>
     <a href="#section-2.3">2.3</a>.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   <a href="#page-5">5</a>
   <a href="#section-3">3</a>.  Overview of the Connectionless OAM Model  . . . . . . . . . .   <a href="#page-5">5</a>
     <a href="#section-3.1">3.1</a>.  TP Address  . . . . . . . . . . . . . . . . . . . . . . .   <a href="#page-6">6</a>
     <a href="#section-3.2">3.2</a>.  Tools . . . . . . . . . . . . . . . . . . . . . . . . . .   <a href="#page-7">7</a>
     <a href="#section-3.3">3.3</a>.  OAM Neighboring Test Points . . . . . . . . . . . . . . .   <a href="#page-7">7</a>
     <a href="#section-3.4">3.4</a>.  Test Point Location Information . . . . . . . . . . . . .   <a href="#page-8">8</a>
     <a href="#section-3.5">3.5</a>.  Test Point Locations  . . . . . . . . . . . . . . . . . .   <a href="#page-8">8</a>
     <a href="#section-3.6">3.6</a>.  Path Discovery Data . . . . . . . . . . . . . . . . . . .   <a href="#page-8">8</a>
     <a href="#section-3.7">3.7</a>.  Continuity Check Data . . . . . . . . . . . . . . . . . .   <a href="#page-9">9</a>
     <a href="#section-3.8">3.8</a>.  OAM Data Hierarchy  . . . . . . . . . . . . . . . . . . .   <a href="#page-9">9</a>
   <a href="#section-4">4</a>.  LIME Time Types YANG Module . . . . . . . . . . . . . . . . .  <a href="#page-12">12</a>
   <a href="#section-5">5</a>.  Connectionless OAM YANG Module  . . . . . . . . . . . . . . .  <a href="#page-15">15</a>
   <a href="#section-6">6</a>.  Connectionless Model Applicability  . . . . . . . . . . . . .  <a href="#page-44">44</a>
     <a href="#section-6.1">6.1</a>.  BFD Extension . . . . . . . . . . . . . . . . . . . . . .  <a href="#page-45">45</a>
       <a href="#section-6.1.1">6.1.1</a>.  Augment Method  . . . . . . . . . . . . . . . . . . .  <a href="#page-45">45</a>
       <a href="#section-6.1.2">6.1.2</a>.  Schema Mount  . . . . . . . . . . . . . . . . . . . .  <a href="#page-47">47</a>
     <a href="#section-6.2">6.2</a>.  LSP Ping Extension  . . . . . . . . . . . . . . . . . . .  <a href="#page-49">49</a>
       <a href="#section-6.2.1">6.2.1</a>.  Augment Method  . . . . . . . . . . . . . . . . . . .  <a href="#page-49">49</a>
       <a href="#section-6.2.2">6.2.2</a>.  Schema Mount  . . . . . . . . . . . . . . . . . . . .  <a href="#page-50">50</a>
   <a href="#section-7">7</a>.  Security Considerations . . . . . . . . . . . . . . . . . . .  <a href="#page-52">52</a>
   <a href="#section-8">8</a>.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  <a href="#page-54">54</a>
   <a href="#section-9">9</a>.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  <a href="#page-54">54</a>
     <a href="#section-9.1">9.1</a>.  Normative References  . . . . . . . . . . . . . . . . . .  <a href="#page-54">54</a>
     <a href="#section-9.2">9.2</a>.  Informative References  . . . . . . . . . . . . . . . . .  <a href="#page-56">56</a>
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  <a href="#page-58">58</a>
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  <a href="#page-59">59</a>




<span class="grey">Kumar, et al.                Standards Track                    [Page 2]</span>

<span id="page-3" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>

   Operations, Administration, and Maintenance (OAM) are important
   networking functions that allow operators to:

   1.  monitor network communications (i.e., reachability verification
       and Continuity Check)

   2.  troubleshoot failures (i.e., fault verification and localization)

   3.  monitor service-level agreements and performance (i.e.,
       performance management)

   An overview of OAM tools is presented in [<a href="./rfc7276" title=""An Overview of Operations, Administration, and Maintenance (OAM) Tools"">RFC7276</a>].

   Ping and Traceroute (see [<a href="./rfc792" title=""Internet Control Message Protocol"">RFC792</a>] and [<a href="./rfc4443" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">RFC4443</a>]) are respectively
   well-known fault verification and isolation tools for IP networks.
   Over the years, different technologies have developed similar
   toolsets for equivalent purposes.

   The different sets of OAM tools may support both connection-oriented
   or connectionless technologies.  In connection-oriented technologies,
   a connection is established prior to the transmission of data.  After
   the connection is established, no additional control information such
   as signaling or operations and maintenance information is required to
   transmit the actual user data.  In connectionless technologies, data
   is typically sent between communicating endpoints without prior
   arrangement, but control information is required to identify the
   destination (e.g., [<a href="#ref-G.800" title=""Unified functional architecture of transport networks"">G.800</a>] and [<a href="./rfc7276" title=""An Overview of Operations, Administration, and Maintenance (OAM) Tools"">RFC7276</a>]).  The YANG data model for
   OAM protocols using connection-oriented communications is specified
   in [<a href="./rfc8531" title=""Generic YANG Data Model for Connection-Oriented Operations, Administration, and Maintenance (OAM) Protocols"">RFC8531</a>].

   This document defines a base YANG data model for OAM protocols that
   use connectionless communications.  The data model is defined using
   the YANG data modeling language [<a href="./rfc7950" title=""The YANG 1.1 Data Modeling Language"">RFC7950</a>].  This generic YANG data
   model for connectionless OAM includes only configuration and state
   data.  It can be used in conjunction with the data retrieval method
   model described in [<a href="./rfc8533" title="" A YANG Data Model for Retrieval Methods for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"">RFC8533</a>], which focuses on the data retrieval
   procedures such as RPC, or it can be used independently of this data
   retrieval method model.











<span class="grey">Kumar, et al.                Standards Track                    [Page 3]</span>

<span id="page-4" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Conventions Used in This Document</span>

   The following terms are defined in [<a href="./rfc6241" title=""Network Configuration Protocol (NETCONF)"">RFC6241</a>] and are used in this
   specification:

   o  client

   o  configuration data

   o  server

   o  state data

   The following terms are defined in [<a href="./rfc7950" title=""The YANG 1.1 Data Modeling Language"">RFC7950</a>] and are used in this
   specification:

   o  augment

   o  data model

   o  data node

   The terminology for describing YANG data models is found in
   [<a href="./rfc7950" title=""The YANG 1.1 Data Modeling Language"">RFC7950</a>].

<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>.  Abbreviations</span>

   BFD - Bidirectional Forwarding Detection [<a href="./rfc5880" title=""Bidirectional Forwarding Detection (BFD)"">RFC5880</a>].

   RPC - Remote Procedure Call [<a href="./rfc1831" title=""RPC: Remote Procedure Call Protocol Specification Version 2"">RFC1831</a>].

   DSCP - Differentiated Services Code Point.

   VRF - Virtual Routing and Forwarding [<a href="./rfc4382" title=""MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base"">RFC4382</a>].

   OWAMP - One-Way Active Measurement Protocol [<a href="./rfc4656" title=""A One-way Active Measurement Protocol (OWAMP)"">RFC4656</a>].

   TWAMP - Two-Way Active Measurement Protocol [<a href="./rfc5357" title=""A Two-Way Active Measurement Protocol (TWAMP)"">RFC5357</a>].

   AS - Autonomous System.

   LSP - Label Switched Path.

   TE - Traffic Engineering.

   MPLS - Multiprotocol Label Switching.

   NI - Network Instance.



<span class="grey">Kumar, et al.                Standards Track                    [Page 4]</span>

<span id="page-5" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   PTP - Precision Time Protocol [<a href="#ref-IEEE.1588v2">IEEE.1588v2</a>].

   NTP - Network Time Protocol [<a href="./rfc5905" title=""Network Time Protocol Version 4: Protocol and Algorithms Specification"">RFC5905</a>].

<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>.  Terminology</span>

   MAC - Media Access Control.

   MAC address - Address for the data-link layer interface.

   TP - Test Point.  The TP is a functional entity that is defined at a
   node in the network and can initiate and/or react to OAM diagnostic
   tests.  This document focuses on the data-plane functionality of TPs.

   RPC operation - A specific Remote Procedure Call.

   CC - A Continuity Check [<a href="./rfc7276" title=""An Overview of Operations, Administration, and Maintenance (OAM) Tools"">RFC7276</a>] is used to verify that a
   destination is reachable and therefore also referred to as
   reachability verification.

<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>.  Tree Diagrams</span>

    Tree diagrams used in this document follow the notation defined in
    [<a href="./rfc8340" title=""YANG Tree Diagrams"">RFC8340</a>].

<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  Overview of the Connectionless OAM Model</span>

   The YANG data model for OAM protocols that use connectionless
   communications has been split into two modules:

   o  The "ietf-lime-time-types" module provides common definitions such
      as Time-related data types and Timestamp-related data types.

   o  The "ietf-connectionless-oam" module defines technology-
      independent abstraction of key OAM constructs for OAM protocols
      that use connectionless communication.

   The "ietf-connectionless-oam" module augments the "/networks/network/
   node" path defined in the "ietf-network" module [<a href="./rfc8345" title=""A YANG Data Model for Network Topologies"">RFC8345</a>] with the
   'test-point-locations' grouping defined in <a href="#section-3.5">Section 3.5</a>.  The network
   nodes in the "/networks/network/node" path are used to describe the
   network hierarchies and the inventory of nodes contained in a
   network.

   Under the 'test-point-locations' grouping, each test point location
   is chosen based on the 'tp-location-type' leaf, which, when chosen,
   leads to a container that includes a list of 'test-point-locations'.




<span class="grey">Kumar, et al.                Standards Track                    [Page 5]</span>

<span id="page-6" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   Each 'test-point-locations' list includes a 'test-point-location-
   info' grouping.  The 'test-point-location-info' grouping includes:

   o  'tp-technology' grouping,

   o  'tp-tools' grouping, and

   o  'connectionless-oam-tps' grouping.

   The groupings of 'tp-address' and 'tp-address-ni' are kept out of the
   'test-point-location-info' grouping to make it addressing agnostic
   and allow varied composition.  Depending upon the choice of the
   'tp-location-type' (determined by the 'tp-address-ni'), each
   container differs in its composition of 'test-point-locations', while
   the 'test-point-location-info' is a common aspect of every
   'test-point-locations'.

   The 'tp-address-ni' grouping is used to describe the corresponding
   network instance.  The 'tp-technology' grouping indicates OAM
   technology details.  The 'connectionless-oam-tps' grouping is used to
   describe the relationship of one test point with other test points.
   The 'tp-tools' grouping describes the OAM tools supported.

   In addition, at the top of the model, there is an 'cc-oper-data'
   container for session statistics.  A grouping is also defined for
   common session statistics, and these are only applicable for
   proactive OAM sessions (see <a href="#section-3.2">Section 3.2</a>).

<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>.  TP Address</span>

   With connectionless OAM protocols, the TP address can be one of the
   following types:

   o  MAC address [<a href="./rfc6136" title=""Layer 2 Virtual Private Network (L2VPN) Operations, Administration, and Maintenance (OAM) Requirements and Framework"">RFC6136</a>] at the data-link layer for TPs

   o  IPv4 or IPv6 address at the IP layer for TPs

   o  TP-attribute identifying a TP associated with an application-layer
      function

   o  Router-id to represent the device or node, which is commonly used
      to identify nodes in routing and other control-plane protocols
      [<a href="./rfc8294" title=""Common YANG Data Types for the Routing Area"">RFC8294</a>].

   To define a forwarding treatment of a test packet, the 'tp-address'
   grouping needs to be associated with additional parameters, e.g.,
   DSCP for IP or Traffic Class [<a href="./rfc5462" title=""Multiprotocol Label Switching (MPLS) Label Stack Entry: "">RFC5462</a>] for MPLS.  In the generic




<span class="grey">Kumar, et al.                Standards Track                    [Page 6]</span>

<span id="page-7" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   connectionless OAM YANG data model, these parameters are not
   explicitly configured.  The model user can add corresponding
   parameters according to their requirements.

<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>.  Tools</span>

   The different OAM tools may be used in one of two basic types of
   activation: proactive and on-demand.  Proactive OAM refers to OAM
   actions that are carried out continuously to permit proactive
   reporting of faults.  The proactive OAM method requires persistent
   configuration.  On-demand OAM refers to OAM actions that are
   initiated via manual intervention for a limited time to carry out
   specific diagnostics.  The on-demand OAM method requires only
   transient configuration (e.g., [<a href="./rfc7276" title=""An Overview of Operations, Administration, and Maintenance (OAM) Tools"">RFC7276</a>] and [<a href="#ref-G.8013" title=""OAM functions and mechanisms for Ethernet based networks"">G.8013</a>]).  In
   connectionless OAM, the 'session-type' grouping is defined to
   indicate which kind of activation will be used by the current
   session.

   In connectionless OAM, the tools attribute is used to describe a
   toolset for fault detection and isolation.  In addition, it can serve
   as a constraint condition when the base model is extended to a
   specific OAM technology.  For example, to fulfill the ICMP PING
   configuration, the "../coam:continuity-check" leaf should be set to
   "true", and then the LIME base model should be augmented with details
   specific to ICMP PING.

<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>.  OAM Neighboring Test Points</span>

   Given that typical network communication stacks have a multi-layer
   architecture, the set of associated OAM protocols has also a multi-
   layer structure; each communication layer in the stack may have its
   own OAM protocol [<a href="./rfc7276" title=""An Overview of Operations, Administration, and Maintenance (OAM) Tools"">RFC7276</a>] that may also be linked to a specific
   administrative domain.  Management of these OAM protocols will
   necessitate associated test points in the nodes accessible by
   appropriate management domains.  Accordingly, a given network
   interface may actually present several test points.

   Each OAM test point may have an associated list of neighboring test
   points that are in other layers up and down the protocol stack for
   the same interface and are therefore related to the current test
   point.  This allows users to easily navigate between related
   neighboring layers to efficiently troubleshoot a defect.  In this
   model, the 'position' leaf defines the relative position of the
   neighboring test point corresponding to the current test point, and
   it is provided to allow correlation of faults at different locations.
   If there is one neighboring test point placed before the current test
   point, the 'position' leaf is set to -1.  If there is one neighboring




<span class="grey">Kumar, et al.                Standards Track                    [Page 7]</span>

<span id="page-8" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   test point placed after the current test point, the 'position' leaf
   is set to 1.  If there is no neighboring test point placed before or
   after the current test point, the 'position' leaf is set to 0.

     +-- oam-neighboring-tps* [index]
        +-- index?                         uint16
        +-- position?                      int8
        +-- (tp-location)?
           +--:(mac-address)
           |  +-- mac-address-location?    yang:mac-address
           +--:(ipv4-address)
           |  +-- ipv4-address-location?   inet:ipv4-address
           +--:(ipv6-address)
           |  +-- ipv6-address-location?   inet:ipv6-address
           +--:(as-number)
           |  +-- as-number-location?      inet:as-number
           +--:(router-id)
              +-- router-id-location?      rt:router-id

<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>.  Test Point Location Information</span>

   This is a generic grouping for Test Point Location Information (i.e.,
   'test-point-location-info' grouping).  It provides details of Test
   Point Location using the 'tp-technology', 'tp-tools', and
   'oam-neighboring-tps' groupings, all of which are defined above.

<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>.  Test Point Locations</span>

   This is a generic grouping for Test Point Locations.  'tp-location-
   type' leaf is used to define location types -- for example,
   'ipv4-location-type', 'ipv6-location-type', etc.  Container is
   defined under each location type containing a list keyed to a test
   point address, Test Point Location Information defined in the section
   above, and network instance name (e.g., VRF instance name) if
   required.

<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>.  Path Discovery Data</span>

   This is a generic grouping for the path discovery data model that can
   be retrieved by any data retrieval method, including RPC operations.
   Path discovery data output from methods, includes 'src-test-point'
   container, 'dst-test-point' container, 'sequence-number' leaf,
   'hop-cnt' leaf, session statistics of various kinds, and information
   related to path verification and path trace.  Path discovery includes
   data to be retrieved on a 'per-hop' basis via a list of 'path-trace-
   info-list' items which includes information such as 'timestamp'
   grouping, 'ingress-intf-name', 'egress-intf-name', and 'app-meta-
   data'.  The path discovery data model is made generic enough to allow



<span class="grey">Kumar, et al.                Standards Track                    [Page 8]</span>

<span id="page-9" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   different methods of data retrieval.  None of the fields are made
   mandatory for that reason.  Note that a set of retrieval methods are
   defined in [<a href="./rfc8533" title="" A YANG Data Model for Retrieval Methods for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"">RFC8533</a>].

<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>.  Continuity Check Data</span>

   This is a generic grouping for the Continuity Check data model that
   can be retrieved by any data retrieval methods including RPC
   operations.  Continuity Check data output from methods, includes
   'src-test-point' container, 'dst-test-point' container,
   'sequence-number' leaf, 'hop-cnt' leaf, and session statistics of
   various kinds.  The Continuity Check data model is made generic
   enough to allow different methods of data retrieval.  None of the
   fields are made mandatory for that reason.  Noted that a set of
   retrieval methods are defined in [<a href="./rfc8533" title="" A YANG Data Model for Retrieval Methods for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"">RFC8533</a>].

<span class="h3"><a class="selflink" id="section-3.8" href="#section-3.8">3.8</a>.  OAM Data Hierarchy</span>

   The complete data hierarchy related to the OAM YANG data model is
   presented below.

  module: ietf-connectionless-oam
      +--ro cc-session-statistics-data {continuity-check}?
         +--ro cc-session-statistics* [type]
            +--ro type                           identityref
            +--ro cc-ipv4-sessions-statistics
            |  +--ro cc-session-statistics
            |     +--ro session-count?              uint32
            |     +--ro session-up-count?           uint32
            |     +--ro session-down-count?         uint32
            |     +--ro session-admin-down-count?   uint32
            +--ro cc-ipv6-sessions-statistics
               +--ro cc-session-statistics
                  +--ro session-count?              uint32
                  +--ro session-up-count?           uint32
                  +--ro session-down-count?         uint32
                  +--ro session-admin-down-count?   uint32
    augment /nd:networks/nd:network/nd:node:
      +--rw tp-location-type?                identityref
      +--rw ipv4-location-type
      |  +--rw test-point-ipv4-location-list
      |     +--rw test-point-locations* [ipv4-location ni]
      |        +--rw ipv4-location          inet:ipv4-address
      |        +--rw ni                     routing-instance-ref
      |        +--rw (technology)?
      |        |  +--:(technology-null)
      |        |     +--rw tech-null?             empty
      |        +--rw tp-tools



<span class="grey">Kumar, et al.                Standards Track                    [Page 9]</span>

<span id="page-10" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      |        |  +--rw continuity-check    boolean
      |        |  +--rw path-discovery      boolean
      |        +--rw root?                  <anydata>
      |        +--rw oam-neighboring-tps* [index]
      |           +--rw index                    uint16
      |           +--rw position?                int8
      |           +--rw (tp-location)?
      |              +--:(mac-address)
      |              |  +--rw mac-address-location?    yang:mac-address
      |              +--:(ipv4-address)
      |              |  +--rw ipv4-address-location?   inet:ipv4-address
      |              +--:(ipv6-address)
      |              |  +--rw ipv6-address-location?   inet:ipv6-address
      |              +--:(as-number)
      |              |  +--rw as-number-location?      inet:as-number
      |              +--:(router-id)
      |                 +--rw router-id-location?      rt:router-id
      +--rw ipv6-location-type
      |  +--rw test-point-ipv6-location-list
      |     +--rw test-point-locations* [ipv6-location ni]
      |        +--rw ipv6-location          inet:ipv6-address
      |        +--rw ni                     routing-instance-ref
      |        +--rw (technology)?
      |        |  +--:(technology-null)
      |        |     +--rw tech-null?             empty
      |        +--rw tp-tools
      |        |  +--rw continuity-check    boolean
      |        |  +--rw path-discovery      boolean
      |        +--rw root?                  <anydata>
      |        +--rw oam-neighboring-tps* [index]
      |           +--rw index                    uint16
      |           +--rw position?                int8
      |           +--rw (tp-location)?
      |              +--:(mac-address)
      |              |  +--rw mac-address-location?    yang:mac-address
      |              +--:(ipv4-address)
      |              |  +--rw ipv4-address-location?   inet:ipv4-address
      |              +--:(ipv6-address)
      |              |  +--rw ipv6-address-location?   inet:ipv6-address
      |              +--:(as-number)
      |              |  +--rw as-number-location?      inet:as-number
      |              +--:(router-id)
      |                 +--rw router-id-location?      rt:router-id
      +--rw mac-location-type
      |  +--rw test-point-mac-address-location-list
      |     +--rw test-point-locations* [mac-address-location]
      |        +--rw mac-address-location    yang:mac-address
      |        +--rw (technology)?



<span class="grey">Kumar, et al.                Standards Track                   [Page 10]</span>

<span id="page-11" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      |        |  +--:(technology-null)
      |        |     +--rw tech-null?              empty
      |        +--rw tp-tools
      |        |  +--rw continuity-check    boolean
      |        |  +--rw path-discovery      boolean
      |        +--rw root?                   <anydata>
      |        +--rw oam-neighboring-tps* [index]
      |           +--rw index                    uint16
      |           +--rw position?                int8
      |           +--rw (tp-location)?
      |              +--:(mac-address)
      |              |  +--rw mac-address-location?    yang:mac-address
      |              +--:(ipv4-address)
      |              |  +--rw ipv4-address-location?   inet:ipv4-address
      |              +--:(ipv6-address)
      |              |  +--rw ipv6-address-location?   inet:ipv6-address
      |              +--:(as-number)
      |              |  +--rw as-number-location?      inet:as-number
      |              +--:(router-id)
      |                 +--rw router-id-location?      rt:router-id
      +--rw group-as-number-location-type
      |  +--rw test-point-as-number-location-list
      |     +--rw test-point-locations* [as-number-location]
      |        +--rw as-number-location     inet:as-number
      |        +--rw ni?                    routing-instance-ref
      |        +--rw (technology)?
      |        |  +--:(technology-null)
      |        |     +--rw tech-null?             empty
      |        +--rw tp-tools
      |        |  +--rw continuity-check    boolean
      |        |  +--rw path-discovery      boolean
      |        +--rw root?                  <anydata>
      |        +--rw oam-neighboring-tps* [index]
      |           +--rw index                    uint16
      |           +--rw position?                int8
      |           +--rw (tp-location)?
      |              +--:(mac-address)
      |              |  +--rw mac-address-location?    yang:mac-address
      |              +--:(ipv4-address)
      |              |  +--rw ipv4-address-location?   inet:ipv4-address
      |              +--:(ipv6-address)
      |              |  +--rw ipv6-address-location?   inet:ipv6-address
      |              +--:(as-number)
      |              |  +--rw as-number-location?      inet:as-number
      |              +--:(router-id)
      |                 +--rw router-id-location?      rt:router-id
      +--rw group-router-id-location-type
         +--rw test-point-system-info-location-list



<span class="grey">Kumar, et al.                Standards Track                   [Page 11]</span>

<span id="page-12" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


            +--rw test-point-locations* [router-id-location]
               +--rw router-id-location     rt:router-id
               +--rw ni?                    routing-instance-ref
               +--rw (technology)?
               |  +--:(technology-null)
               |     +--rw tech-null?             empty
               +--rw tp-tools
               |  +--rw continuity-check    boolean
               |  +--rw path-discovery      boolean
               +--rw root?                  <anydata>
               +--rw oam-neighboring-tps* [index]
                  +--rw index                    uint16
                  +--rw position?                int8
                  +--rw (tp-location)?
                     +--:(mac-address)
                     |  +--rw mac-address-location?    yang:mac-address
                     +--:(ipv4-address)
                     |  +--rw ipv4-address-location?   inet:ipv4-address
                     +--:(ipv6-address)
                     |  +--rw ipv6-address-location?   inet:ipv6-address
                     +--:(as-number)
                     |  +--rw as-number-location?      inet:as-number
                     +--:(router-id)
                        +--rw router-id-location?      rt:router-id

<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  LIME Time Types YANG Module</span>

   <CODE BEGINS> file "[email protected]"

   module ietf-lime-time-types {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-lime-time-types";
     prefix lime;

     organization
       "IETF LIME Working Group";
     contact
       "WG Web:   <<a href="https://datatracker.ietf.org/wg/lime">https://datatracker.ietf.org/wg/lime</a>>
        WG List:  <mailto:lmap@ietf.org>

        Editor:   Qin Wu
                  <bill.wu@huawei.com>";
     description
       "This module provides time-related definitions used by the data
        models written for Layer Independent OAM Management in the
        Multi-Layer Environment (LIME).  This module defines
        identities but no schema tree elements.




<span class="grey">Kumar, et al.                Standards Track                   [Page 12]</span>

<span id="page-13" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        Copyright (c) 2019 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
        set forth in <a href="#section-4">Section 4</a>.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).

        This version of this YANG module is part of <a href="./rfc8532">RFC 8532</a>; see
        the RFC itself for full legal notices.";

     revision 2019-04-16 {
       description
         "Initial version.";
       reference
         "<a href="./rfc8532">RFC 8532</a>: Generic YANG Data Model for the Management of
          Operations, Administration, and Maintenance (OAM) Protocols
          That Use Connectionless Communications";
     }

     /*** Collection of common types related to time ***/
     /*** Time unit identity ***/

     identity time-unit-type {
       description
         "Time unit type.";
     }

     identity hours {
       base time-unit-type;
       description
         "Time unit in hours.";
     }

     identity minutes {
       base time-unit-type;
       description
         "Time unit in minutes.";
     }

     identity seconds {
       base time-unit-type;
       description
         "Time unit in seconds.";
     }




<span class="grey">Kumar, et al.                Standards Track                   [Page 13]</span>

<span id="page-14" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


     identity milliseconds {
       base time-unit-type;
       description
         "Time unit in milliseconds.";
     }

     identity microseconds {
       base time-unit-type;
       description
         "Time unit in microseconds.";
     }

     identity nanoseconds {
       base time-unit-type;
       description
         "Time unit in nanoseconds.";
     }

     /*** Timestamp format Identity ***/

     identity timestamp-type {
       description
         "Base identity for Timestamp Type.";
     }

     identity truncated-ptp {
       base timestamp-type;
       description
         "Identity for 64-bit short-format PTP timestamp.";
     }

     identity truncated-ntp {
       base timestamp-type;
       description
         "Identity for 32-bit short-format NTP timestamp.";
     }

     identity ntp64 {
       base timestamp-type;
       description
         "Identity for 64-bit NTP timestamp.";
     }

     identity icmp {
       base timestamp-type;
       description
         "Identity for 32-bit ICMP timestamp.";
     }



<span class="grey">Kumar, et al.                Standards Track                   [Page 14]</span>

<span id="page-15" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


     identity ptp80 {
       base timestamp-type;
       description
         "Identity for 80-bit PTP timestamp.";
     }
   }

   <CODE ENDS>

<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Connectionless OAM YANG Module</span>

   This module imports the Core YANG Derived Types definition ("ietf-
   yang-types" module) and Internet-Specific Derived Types definitions
   ("ietf-inet-types" module) from [<a href="./rfc6991" title=""Common YANG Data Types"">RFC6991</a>], the "ietf-routing-types"
   module from [<a href="./rfc8294" title=""Common YANG Data Types for the Routing Area"">RFC8294</a>], the "ietf-interfaces" module from [<a href="./rfc8343" title=""A YANG Data Model for Interface Management"">RFC8343</a>],
   the "ietf-network" module from [<a href="./rfc8345" title=""A YANG Data Model for Network Topologies"">RFC8345</a>], the "ietf-network-instance"
   module from [<a href="./rfc8529" title=""YANG Model for Network Instances"">RFC8529</a>], and the "ietf-lime-time-types" module in
   <a href="#section-4">Section 4</a>.  This module references [<a href="#ref-IEEE.1588v1">IEEE.1588v1</a>], [<a href="#ref-IEEE.1588v2">IEEE.1588v2</a>],
   [<a href="./rfc8029" title=""Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"">RFC8029</a>], and additional RFCs cited elsewhere in this document.

   <CODE BEGINS> file "[email protected]"

module ietf-connectionless-oam {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-connectionless-oam";
  prefix cl-oam;

  import ietf-yang-schema-mount {
    prefix yangmnt;
  }
  import ietf-network {
    prefix nd;
  }
  import ietf-yang-types {
    prefix yang;
  }
  import ietf-interfaces {
    prefix if;
  }
  import ietf-inet-types {
    prefix inet;
  }
  import ietf-network-instance {
    prefix ni;
  }
  import ietf-routing-types {
    prefix rt;
  }



<span class="grey">Kumar, et al.                Standards Track                   [Page 15]</span>

<span id="page-16" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


  import ietf-lime-time-types {
    prefix lime;
  }

  organization
    "IETF LIME Working Group";
  contact
    "WG Web:   <<a href="https://datatracker.ietf.org/wg/lime">https://datatracker.ietf.org/wg/lime</a>>
     WG List:  <mailto:lmap@ietf.org>

     Deepak Kumar <dekumar@cisco.com>
     Qin Wu <bill.wu@huawei.com>
     Srihari Raghavan <srihari@cisco.com>
     Michael Wang <wangzitao@huawei.com>
     Reshad Rahman <rrahman@cisco.com>";
  description
    "This YANG module defines the generic configuration,
     data model, and statistics for OAM protocols using
     connectionless communications, described in a
     protocol independent manner.  It is assumed that each
     protocol maps corresponding abstracts to its native
     format.  Each protocol may extend the YANG data model defined
     here to include protocol specific extensions.

     Copyright (c) 2019 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in <a href="#section-4">Section 4</a>.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).

     This version of this YANG module is part of <a href="./rfc8532">RFC 8532</a>; see
     the RFC itself for full legal notices.";

  revision 2019-04-16 {
    description
      "Base model for Connectionless Operations, Administration,
       and Maintenance (OAM).";
    reference
      "<a href="./rfc8532">RFC 8532</a>: Generic YANG Data Model for the Management of
       Operations, Administration, and Maintenance (OAM) Protocols
       That Use Connectionless Communications";
  }

  feature connectionless {



<span class="grey">Kumar, et al.                Standards Track                   [Page 16]</span>

<span id="page-17" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


    description
      "This feature indicates that the OAM solution is connectionless.";
  }

  feature continuity-check {
    description
      "This feature indicates that the server supports
       executing a Continuity Check OAM command and
       returning a response.  Servers that do not advertise
       this feature will not support executing
       Continuity Check commands or the RPC operation model for
       Continuity Check commands.";
  }

  feature path-discovery {
    description
      "This feature indicates that the server supports
       executing a path discovery OAM command and
       returning a response.  Servers that do not advertise
       this feature will not support executing
       path discovery commands or the RPC operation model for
       path discovery commands.";
  }

  feature ptp-long-format {
    description
      "This feature indicates that the timestamp is PTP long format.";
  }

  feature ntp-short-format {
    description
      "This feature indicates that the timestamp is NTP short format.";
  }

  feature icmp-timestamp {
    description
      "This feature indicates that the timestamp is ICMP timestamp.";
  }

  identity traffic-type {
    description
      "This is the base identity of the traffic type,
       which includes IPv4, IPv6, etc.";
  }

  identity ipv4 {
    base traffic-type;
    description



<span class="grey">Kumar, et al.                Standards Track                   [Page 17]</span>

<span id="page-18" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      "identity for IPv4 traffic type.";
  }

  identity ipv6 {
    base traffic-type;
    description
      "identity for IPv6 traffic type.";
  }

  identity address-attribute-types {
    description
      "This is the base identity of the address attribute types, which
       are Generic IPv4/IPv6 Prefix, BGP Labeled IPv4/IPv6 Prefix,
       Tunnel ID, PW ID, VPLS VE ID, etc. (See <a href="./rfc8029">RFC 8029</a> for details.)";
  }

  typedef address-attribute-type {
    type identityref {
      base address-attribute-types;
    }
    description
      "Target address attribute type.";
  }

  typedef percentage {
    type decimal64 {
      fraction-digits 5;
      range "0..100";
    }
    description
      "Percentage.";
  }

  typedef routing-instance-ref {
    type leafref {
      path "/ni:network-instances/ni:network-instance/ni:name";
    }
    description
      "This type is used for leafs that reference a routing instance
       configuration.";
  }

  grouping cc-session-statistics {
    description
      "Grouping for session statistics.";
    container cc-session-statistics {
      description
        "CC session counters.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 18]</span>

<span id="page-19" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      leaf session-count {
        type uint32;
        default "0";
        description
          "Number of Continuity Check sessions.
           A value of zero indicates that no session
           count is sent.";
      }
      leaf session-up-count {
        type uint32;
        default "0";
        description
          "Number of sessions that are up.
           A value of zero indicates that no up
           session count is sent.";
      }
      leaf session-down-count {
        type uint32;
        default "0";
        description
          "Number of sessions that are down.
           A value of zero indicates that no down
           session count is sent.";
      }
      leaf session-admin-down-count {
        type uint32;
        default "0";
        description
          "Number of sessions that are admin-down.
           A value of zero indicates that no admin-
           down session count is sent.";
      }
    }
  }

  grouping session-packet-statistics {
    description
      "Grouping for statistics per session packet.";
    container session-packet-statistics {
      description
        "Statistics per session packet.";
      leaf rx-packet-count {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total count of received OAM packets.



<span class="grey">Kumar, et al.                Standards Track                   [Page 19]</span>

<span id="page-20" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf tx-packet-count {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total count of transmitted OAM packets.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf rx-bad-packet {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total number of received bad OAM packets.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf tx-packet-failed {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total number of OAM packets that failed when sent.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
    }
  }




<span class="grey">Kumar, et al.                Standards Track                   [Page 20]</span>

<span id="page-21" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


  grouping cc-per-session-statistics {
    description
      "Grouping for per-session statistics.";
    container cc-per-session-statistics {
      description
        "Per-session statistics.";
      leaf create-time {
        type yang:date-and-time;
        description
          "Time and date when session is created.";
      }
      leaf last-down-time {
        type yang:date-and-time;
        description
          "Time and date of the last time session was down.";
      }
      leaf last-up-time {
        type yang:date-and-time;
        description
          "Time and date of the last time session was up.";
      }
      leaf down-count {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total count of Continuity Check sessions down.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf admin-down-count {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total count of Continuity Check sessions admin down.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      uses session-packet-statistics;



<span class="grey">Kumar, et al.                Standards Track                   [Page 21]</span>

<span id="page-22" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


    }
  }

  grouping session-error-statistics {
    description
      "Grouping for per-session error statistics.";
    container session-error-statistics {
      description
        "Per-session error statistics.";
      leaf packet-loss-count {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total count of received packet drops.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf loss-ratio {
        type percentage;
        description
          "Loss ratio of the packets.  Expressed as percentage
           of packets lost with respect to packets sent.";
      }
      leaf packet-reorder-count {
        type uint32 {
          range "0..4294967295";
        }
        default "0";
        description
          "Total count of received packets that were reordered.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf packets-out-of-seq-count {
        type uint32 {
          range "0..4294967295";
        }
        description
          "Total count of packets received out of sequence.
           The value of count will be set to zero (0)



<span class="grey">Kumar, et al.                Standards Track                   [Page 22]</span>

<span id="page-23" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf packets-dup-count {
        type uint32 {
          range "0..4294967295";
        }
        description
          "Total count of received packet duplicates.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
    }
  }

  grouping session-delay-statistics {
    description
      "Grouping for delay statistics per session.";
    container session-delay-statistics {
      description
        "Session delay summarized information.  By default, a
         one-way measurement protocol (e.g., OWAMP) is used
         to measure delay.  When a two-way measurement protocol
         (e.g., TWAMP) is used instead, it can be indicated
         using the protocol-id defined in RPC operation of
         retrieval methods for connectionless OAM (<a href="./rfc8533">RFC 8533</a>),
         i.e., set protocol-id as OWAMP.  Note that only one
         measurement protocol for delay is specified for
         interoperability reasons.";
      leaf time-unit-value {
        type identityref {
          base lime:time-unit-type;
        }
        default "lime:milliseconds";
        description
          "Time units, where the options are s, ms, ns, etc.";
      }
      leaf min-delay-value {
        type uint32;
        description
          "Minimum delay value observed.";
      }
      leaf max-delay-value {



<span class="grey">Kumar, et al.                Standards Track                   [Page 23]</span>

<span id="page-24" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        type uint32;
        description
          "Maximum delay value observed.";
      }
      leaf average-delay-value {
        type uint32;
        description
          "Average delay value observed.";
      }
    }
  }

  grouping session-jitter-statistics {
    description
      "Grouping for per session jitter statistics.";
    container session-jitter-statistics {
      description
        "Summarized information about session jitter.  By default,
         jitter is measured using IP Packet Delay Variation
         (IPDV) as defined in <a href="./rfc3393">RFC 3393</a>.  When the other measurement
         method is used instead (e.g., Packet Delay Variation used
         in ITU-T Recommendation Y.1540, it can be indicated using
         protocol-id-meta-data defined in RPC operation of
         retrieval methods for connectionless OAM (<a href="./rfc8533">RFC 8533</a>).
         Note that only one measurement method for jitter is
         specified for interoperability reasons.";
      leaf unit-value {
        type identityref {
          base lime:time-unit-type;
        }
        default "lime:milliseconds";
        description
          "Time units, where the options are s, ms, ns, etc.";
      }
      leaf min-jitter-value {
        type uint32;
        description
          "Minimum jitter value observed.";
      }
      leaf max-jitter-value {
        type uint32;
        description
          "Maximum jitter value observed.";
      }
      leaf average-jitter-value {
        type uint32;
        description
          "Average jitter value observed.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 24]</span>

<span id="page-25" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      }
    }
  }

  grouping session-path-verification-statistics {
    description
      "Grouping for path verification statistics per session.";
    container session-path-verification-statistics {
      description
        "OAM path verification statistics per session.";
      leaf verified-count {
        type uint32 {
          range "0..4294967295";
        }
        description
          "Total number of OAM packets that
           went through a path as intended.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
      leaf failed-count {
        type uint32 {
          range "0..4294967295";
        }
        description
          "Total number of OAM packets that
           went through an unintended path.
           The value of count will be set to zero (0)
           on creation and will thereafter increase
           monotonically until it reaches a maximum value
           of 2^32-1 (4294967295 decimal), when it wraps
           around and starts increasing again from zero.";
      }
    }
  }

  grouping session-type {
    description
      "This object indicates which kind of activation will
       be used by the current session.";
    leaf session-type {
      type enumeration {
        enum proactive {
          description
            "The current session is a proactive session.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 25]</span>

<span id="page-26" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        }
        enum on-demand {
          description
            "The current session is an on-demand session.";
        }
      }
      default "on-demand";
      description
        "Indicate which kind of activation will be used
         by the current session.";
    }
  }

  identity tp-address-technology-type {
    description
      "Test point address type.";
  }

  identity mac-address-type {
    base tp-address-technology-type;
    description
      "MAC address type.";
  }

  identity ipv4-address-type {
    base tp-address-technology-type;
    description
      "IPv4 address type.";
  }

  identity ipv6-address-type {
    base tp-address-technology-type;
    description
      "IPv6 address type.";
  }

  identity tp-attribute-type {
    base tp-address-technology-type;
    description
      "Test point attribute type.";
  }

  identity router-id-address-type {
    base tp-address-technology-type;
    description
      "System ID address type.";
  }




<span class="grey">Kumar, et al.                Standards Track                   [Page 26]</span>

<span id="page-27" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


  identity as-number-address-type {
    base tp-address-technology-type;
    description
      "AS number address type.";
  }

  identity route-distinguisher-address-type {
    base tp-address-technology-type;
    description
      "Route Distinguisher address type.";
  }

  grouping tp-address {
    leaf tp-location-type {
      type identityref {
        base tp-address-technology-type;
      }
      mandatory true;
      description
        "Test point address type.";
    }
    container mac-address {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:mac-address-type')" {
        description
          "MAC address type.";
      }
      leaf mac-address {
        type yang:mac-address;
        mandatory true;
        description
          "MAC address.";
      }
      description
        "MAC address based TP addressing.";
    }
    container ipv4-address {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:ipv4-address-type')" {
        description
          "IPv4 address type.";
      }
      leaf ipv4-address {
        type inet:ipv4-address;
        mandatory true;
        description
          "IPv4 address.";
      }



<span class="grey">Kumar, et al.                Standards Track                   [Page 27]</span>

<span id="page-28" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      description
        "IP address based TP addressing.";
    }
    container ipv6-address {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:ipv6-address-type')" {
        description
          "IPv6 address type.";
      }
      leaf ipv6-address {
        type inet:ipv6-address;
        mandatory true;
        description
          "IPv6 address.";
      }
      description
        "IPv6 address based TP addressing.";
    }
    container tp-attribute {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:tp-attribute-type')" {
        description
          "Test point attribute type.";
      }
      leaf tp-attribute-type {
        type address-attribute-type;
        description
          "Test point type.";
      }
      choice tp-attribute-value {
        description
          "Test point value.";
        case ip-prefix {
          leaf ip-prefix {
            type inet:ip-prefix;
            description
              "Generic IPv4/IPv6 prefix.  See Sections <a href="#section-3.2.13">3.2.13</a> and
               3.2.14 of <a href="./rfc8029">RFC 8029</a>.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }
        }
        case bgp {
          leaf bgp {
            type inet:ip-prefix;
            description
              "BGP Labeled IPv4/IPv6 Prefix.  See Sections



<span class="grey">Kumar, et al.                Standards Track                   [Page 28]</span>

<span id="page-29" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


               3.2.11 and 3.2.12 of <a href="./rfc8029">RFC 8029</a> for details.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }
        }
        case tunnel {
          leaf tunnel-interface {
            type uint32;
            description
              "Basic IPv4/IPv6 Tunnel ID.  See Sections <a href="#section-3.2.3">3.2.3</a>
               and 3.2.4 of <a href="./rfc8029">RFC 8029</a> for details.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures.";
          }
        }
        case pw {
          leaf remote-pe-address {
            type inet:ip-address;
            description
              "Remote PE address.  See <a href="./rfc8029#section-3.2.8">Section 3.2.8
               of RFC 8029</a> for details.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }
          leaf pw-id {
            type uint32;
            description
              "Pseudowire ID is a non-zero 32-bit ID.  See Sections
               3.2.8 and 3.2.9 of <a href="./rfc8029">RFC 8029</a> for details.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }
        }
        case vpls {
          leaf route-distinguisher {
            type rt:route-distinguisher;
            description
              "Route Distinguisher is an 8-octet identifier
               used to distinguish information about various
               L2VPNs advertised by a node.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }



<span class="grey">Kumar, et al.                Standards Track                   [Page 29]</span>

<span id="page-30" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


          leaf sender-ve-id {
            type uint16;
            description
              "Sender's VE ID.  The VE ID (VPLS Edge Identifier)
               is a 2-octet identifier.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }
          leaf receiver-ve-id {
            type uint16;
            description
              "Receiver's VE ID.  The VE ID (VPLS Edge Identifier)
               is a 2-octet identifier.";
            reference
              "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
               Switched (MPLS) Data-Plane Failures";
          }
        }
        case mpls-mldp {
          choice root-address {
            description
              "Root address choice.";
            case ip-address {
              leaf source-address {
                type inet:ip-address;
                description
                  "IP address.";
              }
              leaf group-ip-address {
                type inet:ip-address;
                description
                  "Group IP address.";
              }
            }
            case vpn {
              leaf as-number {
                type inet:as-number;
                description
                  "The AS number that identifies an Autonomous
                   System.";
              }
            }
            case global-id {
              leaf lsp-id {
                type string;
                description
                  "LSP ID is an identifier of a LSP



<span class="grey">Kumar, et al.                Standards Track                   [Page 30]</span>

<span id="page-31" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


                   within a MPLS network.";
                reference
                  "<a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label
                   Switched (MPLS) Data-Plane Failures";
              }
            }
          }
        }
      }
      description
        "Test Point Attribute Container.";
    }
    container system-info {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:router-id-address-type')" {
        description
          "System ID address type.";
      }
      leaf router-id {
        type rt:router-id;
        description
          "Router ID assigned to this node.";
      }
      description
        "Router ID container.";
    }
    description
      "TP Address.";
  }

  grouping tp-address-ni {
    description
      "Test point address with VRF.";
    leaf ni {
      type routing-instance-ref;
      description
        "The ni is used to describe virtual resource partitioning
         that may be present on a network device.  An example of a
         common industry term for virtual resource partitioning is
         'VRF instance'.";
    }
    uses tp-address;
  }

  grouping connectionless-oam-tps {
    list oam-neighboring-tps {
      key "index";
      leaf index {



<span class="grey">Kumar, et al.                Standards Track                   [Page 31]</span>

<span id="page-32" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        type uint16 {
          range "0..65535";
        }
        description
          "Index of a list of neighboring test points
           in layers up and down the stack for
           the same interface that are related to the
           current test point.";
      }
      leaf position {
        type int8 {
          range "-1..1";
        }
        default "0";
        description
          "The position of the neighboring test point relative to
           the current test point.  Level 0 indicates a test point
           corresponding to a specific index in the same layer as
           the current test point.  -1 means there is a test point
           corresponding to a specific index in the test point down
           the stack, and +1 means there is a test point corresponding
           to a specific index in the test point up the stack.";
      }
      choice tp-location {
        case mac-address {
          leaf mac-address-location {
            type yang:mac-address;
            description
              "MAC address.";
          }
          description
            "MAC address based TP addressing.";
        }
        case ipv4-address {
          leaf ipv4-address-location {
            type inet:ipv4-address;
            description
              "IPv4 address.";
          }
          description
            "IP address based TP addressing.";
        }
        case ipv6-address {
          leaf ipv6-address-location {
            type inet:ipv6-address;
            description
              "IPv6 address.";
          }



<span class="grey">Kumar, et al.                Standards Track                   [Page 32]</span>

<span id="page-33" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


          description
            "IPv6 address based TP addressing.";
        }
        case as-number {
          leaf as-number-location {
            type inet:as-number;
            description
              "AS number location.";
          }
          description
            "AS number for point-to-multipoint OAM.";
        }
        case router-id {
          leaf router-id-location {
            type rt:router-id;
            description
              "System ID location.";
          }
          description
            "System ID.";
        }
        description
          "TP location.";
      }
      description
        "List of neighboring test points in the same layer that are
         related to current test point.  If the neighboring test point
         is placed after the current test point, the position is
         specified as +1.  If the neighboring test point is placed
         before the current test point, the position is specified
         as -1; if no neighboring test points are placed before or
         after the current test point in the same layer, the
         position is specified as 0.";
    }
    description
      "List of neighboring test points related to connectionless OAM.";
  }

  grouping tp-technology {
    choice technology {
      default "technology-null";
      case technology-null {
        description
          "This is a placeholder when no technology is needed.";
        leaf tech-null {
          type empty;
          description
            "There is no technology to be defined.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 33]</span>

<span id="page-34" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        }
      }
      description
        "Technology choice.";
    }
    description
      "OAM technology.";
  }

  grouping tp-tools {
    description
      "Test point OAM toolset.";
    container tp-tools {
      leaf continuity-check {
        type boolean;
        mandatory true;
        description
          "A flag indicating whether or not the
           Continuity Check function is supported.";
        reference
          "<a href="./rfc792">RFC 792</a>: INTERNET CONTROL MESSAGE PROTOCOL
           <a href="./rfc4443">RFC 4443</a>: Internet Control Message Protocol (ICMPv6)
               for the Internet Protocol Version 6 (IPv6) Specification
           <a href="./rfc5880">RFC 5880</a>: Bidirectional Forwarding Detection
           <a href="./rfc5881">RFC 5881</a>: BFD for IPv4 and IPv6
           <a href="./rfc5883">RFC 5883</a>: BFD for Multihop Paths
           <a href="./rfc5884">RFC 5884</a>: BFD for MPLS Label Switched Paths
           <a href="./rfc5885">RFC 5885</a>: BFD for PW VCCV
           <a href="./rfc6450">RFC 6450</a>: Multicast Ping Protocol
           <a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label Switched (MPLS)
               Data-Plane Failures";
      }
      leaf path-discovery {
        type boolean;
        mandatory true;
        description
          "A flag indicating whether or not the
           path discovery function is supported.";
        reference
          "<a href="./rfc792">RFC 792</a>: INTERNET CONTROL MESSAGE PROTOCOL
           <a href="./rfc4443">RFC 4443</a>: Internet Control Message Protocol (ICMPv6)
               for the Internet Protocol Version 6 (IPv6) Specification
           <a href="./rfc4884">RFC 4884</a>: Extended ICMP to Support Multi-Part Messages
           <a href="./rfc5837">RFC 5837</a>: Extending ICMP for Interface and Next-Hop
               Identification
           <a href="./rfc8029">RFC 8029</a>: Detecting Multiprotocol Label Switched (MPLS)
               Data-Plane Failures";
      }



<span class="grey">Kumar, et al.                Standards Track                   [Page 34]</span>

<span id="page-35" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      description
        "Container for test point OAM toolset.";
    }
  }

  grouping test-point-location-info {
    uses tp-technology;
    uses tp-tools;
    anydata root {
      yangmnt:mount-point "root";
      description
        "Root for models supported per test point.";
    }
    uses connectionless-oam-tps;
    description
      "Test point location.";
  }

  grouping test-point-locations {
    description
      "Group of test point locations.";
    leaf tp-location-type {
      type identityref {
        base tp-address-technology-type;
      }
      description
        "Test point location type.";
    }
    container ipv4-location-type {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:ipv4-address-type')" {
        description
          "When test point location type is equal to IPv4 address.";
      }
      container test-point-ipv4-location-list {
        list test-point-locations {
          key "ipv4-location ni";
          leaf ipv4-location {
            type inet:ipv4-address;
            description
              "IPv4 address.";
          }
          leaf ni {
            type routing-instance-ref;
            description
              "The ni is used to describe the
               corresponding network instance";
          }



<span class="grey">Kumar, et al.                Standards Track                   [Page 35]</span>

<span id="page-36" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


          uses test-point-location-info;
          description
            "List of test point locations.";
        }
        description
          "Serves as top-level container
           for test point location list.";
      }
      description
        "Container for IPv4 location types.";
    }
    container ipv6-location-type {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:ipv6-address-type')" {
        description
          "When test point location is equal to IPv6 address.";
      }
      container test-point-ipv6-location-list {
        list test-point-locations {
          key "ipv6-location ni";
          leaf ipv6-location {
            type inet:ipv6-address;
            description
              "IPv6 address.";
          }
          leaf ni {
            type routing-instance-ref;
            description
              "The ni is used to describe the
               corresponding network instance.";
          }
          uses test-point-location-info;
          description
            "List of test point locations.";
        }
        description
          "Serves as top-level container
           for test point location list.";
      }
      description
        "ipv6 location type container.";
    }
    container mac-location-type {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:mac-address-type')" {
        description
          "When test point location type is equal to MAC address.";
      }



<span class="grey">Kumar, et al.                Standards Track                   [Page 36]</span>

<span id="page-37" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      container test-point-mac-address-location-list {
        list test-point-locations {
          key "mac-address-location";
          leaf mac-address-location {
            type yang:mac-address;
            description
              "MAC address.";
          }
          uses test-point-location-info;
          description
            "List of test point locations.";
        }
        description
          "Serves as top-level container
           for test point location list.";
      }
      description
        "Container for MAC address location types.";
    }
    container group-as-number-location-type {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:as-number-address-type')" {
        description
          "When test point location type is equal to AS number.";
      }
      container test-point-as-number-location-list {
        list test-point-locations {
          key "as-number-location";
          leaf as-number-location {
            type inet:as-number;
            description
              "AS number for point-to-multipoint OAM.";
          }
          leaf ni {
            type routing-instance-ref;
            description
              "The ni is used to describe the
               corresponding network instance.";
          }
          uses test-point-location-info;
          description
            "List of test point locations.";
        }
        description
          "Serves as top-level container
           for test point location list.";
      }
      description



<span class="grey">Kumar, et al.                Standards Track                   [Page 37]</span>

<span id="page-38" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        "Container for AS number location types.";
    }
    container group-router-id-location-type {
      when "derived-from-or-self(../tp-location-type,"
         + "'cl-oam:router-id-address-type')" {
        description
          "When test point location type is equal to system-info.";
      }
      container test-point-system-info-location-list {
        list test-point-locations {
          key "router-id-location";
          leaf router-id-location {
            type rt:router-id;
            description
              "System ID.";
          }
          leaf ni {
            type routing-instance-ref;
            description
              "The ni is used to describe the
               corresponding network instance.";
          }
          uses test-point-location-info;
          description
            "List of test point locations.";
        }
        description
          "Serves as top-level container for
           test point location list.";
      }
      description
        "Container for system ID location types.";
    }
  }

  augment "/nd:networks/nd:network/nd:node" {
    description
      "Augments the /networks/network/node path defined in the
       ietf-network module (<a href="./rfc8345">RFC 8345</a>) with test-point-locations
       grouping.";
    uses test-point-locations;
  }

  grouping timestamp {
    description
      "Grouping for timestamp.";
    leaf timestamp-type {
      type identityref {



<span class="grey">Kumar, et al.                Standards Track                   [Page 38]</span>

<span id="page-39" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        base lime:timestamp-type;
      }
      description
        "Type of timestamp, such as Truncated PTP or NTP.";
    }
    container timestamp-64bit {
      when "derived-from-or-self(../timestamp-type,"
         + "'lime:truncated-ptp')"
         + "or derived-from-or-self(../timestamp-type,"
         + "'lime:ntp64')" {
        description
          "Only applies when PTP truncated or 64-bit NTP timestamp.";
      }
      leaf timestamp-sec {
        type uint32;
        description
          "Absolute timestamp in seconds as per IEEE 1588v2
           or seconds part in 64-bit NTP timestamp.";
      }
      leaf timestamp-nanosec {
        type uint32;
        description
          "Fractional part in nanoseconds as per IEEE 1588v2
           or fractional part in 64-bit NTP timestamp.";
      }
      description
        "Container for 64-bit timestamp.  The Network Time Protocol
         (NTP) 64-bit timestamp format is defined in <a href="./rfc5905">RFC 5905</a>.  The
         PTP truncated timestamp format is defined in IEEE 1588v1.";
      reference
        "<a href="./rfc5905">RFC 5905</a>: Network Time Protocol Version 4: Protocol and
             Algorithms Specification
         IEEE 1588v1: IEEE Standard for a Precision Clock
             Synchronization Protocol for Networked Measurement and
             Control Systems Version 1";
    }
    container timestamp-80bit {
      when "derived-from-or-self(../timestamp-type, 'lime:ptp80')" {
        description
          "Only applies when 80-bit PTP timestamp.";
      }
      if-feature "ptp-long-format";
      leaf timestamp-sec {
        type uint64 {
          range "0..281474976710655";
        }
        description
          "48-bit timestamp in seconds as per IEEE 1588v2.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 39]</span>

<span id="page-40" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      }
      leaf timestamp-nanosec {
        type uint32;
        description
          "Fractional part in nanoseconds as per IEEE 1588v2.";
      }
      description
        "Container for 80-bit timestamp.";
    }
    container ntp-timestamp-32bit {
      when "derived-from-or-self(../timestamp-type,"
         + "'lime:truncated-ntp')" {
        description
          "Only applies when 32-bit NTP short-format timestamp.";
      }
      if-feature "ntp-short-format";
      leaf timestamp-sec {
        type uint16;
        description
          "Timestamp in seconds as per short-format NTP.";
      }
      leaf timestamp-nanosec {
        type uint16;
        description
          "Truncated fractional part in 16-bit NTP timestamp.";
      }
      description
        "Container for 32-bit timestamp <a href="./rfc5905">RFC5905</a>.";
      reference
        "<a href="./rfc5905">RFC 5905</a>: Network Time Protocol Version 4: Protocol and
         Algorithms Specification.";
    }
    container icmp-timestamp-32bit {
      when "derived-from-or-self(../timestamp-type, 'lime:icmp')" {
        description
          "Only applies when ICMP timestamp.";
      }
      if-feature "icmp-timestamp";
      leaf timestamp-millisec {
        type uint32;
        description
          "Timestamp in milliseconds for ICMP timestamp.";
      }
      description
        "Container for 32-bit timestamp.  See <a href="./rfc792">RFC 792</a> for ICMP
         timestamp format.";
    }
  }



<span class="grey">Kumar, et al.                Standards Track                   [Page 40]</span>

<span id="page-41" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


  grouping path-discovery-data {
    description
      "Data output from nodes related to path discovery.";
    container src-test-point {
      description
        "Source test point.";
      uses tp-address-ni;
    }
    container dest-test-point {
      description
        "Destination test point.";
      uses tp-address-ni;
    }
    leaf sequence-number {
      type uint64;
      default "0";
      description
        "Sequence number in data packets.  A value of
         zero indicates that no sequence number is sent.";
    }
    leaf hop-cnt {
      type uint8;
      default "0";
      description
        "Hop count.  A value of zero indicates
         that no hop count is sent.";
    }
    uses session-packet-statistics;
    uses session-error-statistics;
    uses session-delay-statistics;
    uses session-jitter-statistics;
    container path-verification {
      description
        "Optional information related to path verification.";
      leaf flow-info {
        type string;
        description
          "Information that refers to the flow.";
      }
      uses session-path-verification-statistics;
    }
    container path-trace-info {
      description
        "Optional per-hop path trace information about test points.
         The path trace information list typically has a single
         element for per-hop cases such as path-discovery RPC operation
         but allows a list of hop-related information for other types of
         data retrieval methods.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 41]</span>

<span id="page-42" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      list path-trace-info-list {
        key "index";
        description
          "Path trace information list.";
        leaf index {
          type uint32;
          description
            "Trace information index.";
        }
        uses tp-address-ni;
        uses timestamp;
        leaf ingress-intf-name {
          type if:interface-ref;
          description
            "Ingress interface name.";
        }
        leaf egress-intf-name {
          type if:interface-ref;
          description
            "Egress interface name.";
        }
        leaf queue-depth {
          type uint32;
          description
            "Length of the queue of the interface from where
             the packet is forwarded out.  The queue depth could
             be the current number of memory buffers used by the
             queue, and a packet can consume one or more memory buffers,
             thus constituting device-level information.";
        }
        leaf transit-delay {
          type uint32;
          description
            "Time in nanoseconds that the packet spent transiting a
             node.";
        }
        leaf app-meta-data {
          type uint64;
          description
            "Application-specific data added by node.";
        }
      }
    }
  }

  grouping continuity-check-data {
    description
      "Continuity Check data output from nodes.";



<span class="grey">Kumar, et al.                Standards Track                   [Page 42]</span>

<span id="page-43" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


    container src-test-point {
      description
        "Source test point.";
      uses tp-address-ni;
      leaf egress-intf-name {
        type if:interface-ref;
        description
          "Egress interface name.";
      }
    }
    container dest-test-point {
      description
        "Destination test point.";
      uses tp-address-ni;
      leaf ingress-intf-name {
        type if:interface-ref;
        description
          "Ingress interface name.";
      }
    }
    leaf sequence-number {
      type uint64;
      default "0";
      description
        "Sequence number in data packets.  A value of
         zero indicates that no sequence number is sent.";
    }
    leaf hop-cnt {
      type uint8;
      default "0";
      description
        "Hop count.  A value of zero indicates
         that no hop count is sent.";
    }
    uses session-packet-statistics;
    uses session-error-statistics;
    uses session-delay-statistics;
    uses session-jitter-statistics;
  }

  container cc-session-statistics-data {
    if-feature "continuity-check";
    config false;
    list cc-session-statistics {
      key "type";
      leaf type {
        type identityref {
          base traffic-type;



<span class="grey">Kumar, et al.                Standards Track                   [Page 43]</span>

<span id="page-44" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


        }
        description
          "Type of traffic.";
      }
      container cc-ipv4-sessions-statistics {
        when "../type = 'ipv4'" {
          description
            "Only applies when traffic type is IPv4.";
        }
        description
          "CC ipv4 sessions.";
        uses cc-session-statistics;
      }
      container cc-ipv6-sessions-statistics {
        when "../type = 'ipv6'" {
          description
            "Only applies when traffic type is IPv6.";
        }
        description
          "CC IPv6 sessions.";
        uses cc-session-statistics;
      }
      description
        "List of CC session statistics data.";
    }
    description
      "CC operational information.";
  }
}

   <CODE ENDS>

<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Connectionless Model Applicability</span>

   The "ietf-connectionless-oam" module defined in this document
   provides a technology-independent abstraction of key OAM constructs
   for OAM protocols that use connectionless communication.  This module
   can be further extended to include technology-specific details, e.g.,
   adding new data nodes with technology-specific functions and
   parameters into proper anchor points of the base model, so as to
   develop a technology-specific connectionless OAM model.

   This section demonstrates the usability of the connectionless YANG
   OAM data model to various connectionless OAM technologies, e.g., BFD
   and LSP ping.  Note that, in this section, several snippets of
   technology-specific model extensions are presented for illustrative
   purposes.  The complete model extensions should be worked on in the
   working groups of the respective protocols.



<span class="grey">Kumar, et al.                Standards Track                   [Page 44]</span>

<span id="page-45" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>.  BFD Extension</span>

   <a href="./rfc7276">RFC 7276</a> defines BFD as a connection-oriented protocol.  It is used
   to monitor a connectionless protocol in the case of basic BFD for IP.

<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>.  Augment Method</span>

   The following sections show how the "ietf-connectionless-oam" module
   can be extended to cover BFD technology.  For this purpose, a set of
   extensions are introduced such as the technology-type extension and
   test-point attributes extension.

   Note that a dedicated BFD YANG data model [<a href="#ref-BFD-YANG" title=""YANG Data Model for Bidirectional Forwarding Detection (BFD)"">BFD-YANG</a>] is also
   standardized.  Augmentation of the "ietf-connectionless-oam" module
   with BFD-specific details provides an alternative approach with a
   unified view of management information across various OAM protocols.
   The BFD-specific details can be the grouping defined in the BFD
   model, thereby avoiding duplication of effort.

<span class="h5"><a class="selflink" id="section-6.1.1.1" href="#section-6.1.1.1">6.1.1.1</a>.  Technology-Type Extension</span>

   No BFD technology type has been defined in the "ietf-connectionless-
   oam" module.  Therefore, a technology-type extension is required in
   the module extension.

   The snippet below depicts an example of adding the "bfd" type as an
   augment to the "ietf-connectionless-oam" module:

   augment "/nd:networks/nd:network/nd:node/"
   +"coam:location-type/coam:ipv4-location-type"
   +"/coam:test-point-ipv4-location-list/"
   +"coam:test-point-locations/coam:technology"
   {
       leaf bfd{
      type string;
     }
   }

<span class="h5"><a class="selflink" id="section-6.1.1.2" href="#section-6.1.1.2">6.1.1.2</a>.  Test Point Attributes Extension</span>

   To support BFD, the "ietf-connectionless-oam" module can be extended
   by adding specific parameters into the "test-point-locations" list
   and/or adding a new location type such as "BFD over MPLS TE" under
   "location-type".







<span class="grey">Kumar, et al.                Standards Track                   [Page 45]</span>

<span id="page-46" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


<span class="h6"><a class="selflink" id="section-6.1.1.2.1" href="#section-6.1.1.2.1">6.1.1.2.1</a>.  Define and Insert New Nodes into Corresponding test-point-</span>
<span class="h6">            location</span>

   In the "ietf-connectionless-oam" module, multiple "test-point-
   location" lists are defined under the "location-type" choice node.
   Therefore, to derive a model for some BFD technologies (such as IP
   single-hop, IP multihop, etc.), data nodes for BFD-specific details
   need to be added to the corresponding "test-point-locations" list.
   In this section, some groupings that are defined in [<a href="#ref-BFD-YANG" title=""YANG Data Model for Bidirectional Forwarding Detection (BFD)"">BFD-YANG</a>] are
   reused as follows.

   The snippet below shows how the "ietf-connectionless-oam" module can
   be extended to support "BFD IP Single-Hop":

   augment "/nd:networks/nd:network/nd:node/"
   +"coam:location-type/coam:ipv4-location-type"
   +"/coam:test-point-ipv4-location-list/"
           +"coam:test-point-locations"
   {
           container session-cfg {
             description "BFD IP single-hop session configuration";
             list sessions {
               key "interface dest-addr";
               description "List of IP single-hop sessions";
               leaf interface {
                 type if:interface-ref;
                 description
                   "Interface on which the BFD session is running.";
               }
               leaf dest-addr {
                 type inet:ip-address;
                 description "IP address of the peer";
               }
               uses bfd:bfd-grouping-common-cfg-parms;
               uses bfd:bfd-grouping-echo-cfg-parms;
             }
           }
   }

   Similar augmentations can be defined to support other BFD
   technologies such as BFD IP Multihop, BFD over MPLS, etc.










<span class="grey">Kumar, et al.                Standards Track                   [Page 46]</span>

<span id="page-47" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


<span class="h6"><a class="selflink" id="section-6.1.1.2.2" href="#section-6.1.1.2.2">6.1.1.2.2</a>.  Add New location-type Cases</span>

   In the "ietf-connectionless-oam" module, If there is no appropriate
   "location-type" case that can be extended, a new "location-type" case
   can be defined and inserted into the "location-type" choice node.

   Therefore, there is flexibility -- the module user can add "location-
   type" to support other types of test point that are not defined in
   the "ietf-connectionless-oam" module.  In this section, a new
   "location-type" case is added, and some groupings that are defined in
   [<a href="#ref-BFD-YANG" title=""YANG Data Model for Bidirectional Forwarding Detection (BFD)"">BFD-YANG</a>] are reused as follows.

   The snippet below shows how the "ietf-connectionless-oam" module can
   be extended to support "BFD over MPLS-TE":

   augment "/nd:networks/nd:network/nd:node/coam:location-type"{
    case te-location{
     list test-point-location-list{
      key "tunnel-name";
      leaf tunnel-name{
       type leafref{
    path "/te:te/te:tunnels/te:tunnel/te:name";
   }
   description
   "Point to a TE instance.";
      }
       uses bfd:bfd-grouping-common-cfg-parms;
           uses bfd-mpls:bfd-encap-cfg;
     }
    }
   }

   Similar augmentations can be defined to support other BFD
   technologies such as BFD over LAG, etc.

<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>.  Schema Mount</span>

   An alternative method is using the schema mount mechanism [<a href="./rfc8528" title=""YANG Schema Mount"">RFC8528</a>]
   in the "ietf-connectionless-oam" module.  Within the "test-point-
   locations" list, a "root" attribute is defined to provide a mount
   point for models that will be added onto per "test-point-locations".
   Therefore, the "ietf-connectionless-oam" module can provide a place
   in the node hierarchy where other OAM YANG data models can be
   attached, without any special extension in the "ietf-connectionless-
   oam" YANG data module [<a href="./rfc8528" title=""YANG Schema Mount"">RFC8528</a>].  Note that the limitation of the
   schema mount method is that it's not allowed to specify certain
   modules that are required to be mounted under a mount point.




<span class="grey">Kumar, et al.                Standards Track                   [Page 47]</span>

<span id="page-48" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   The snippet below depicts the definition of the "root" attribute.

         anydata root {
          yangmnt:mount-point root;
          description
            "Root for models that are supported per test point";
         }

   The following section shows how the "ietf-connectionless-oam" module
   can use schema mount to support BFD technology.

<span class="h5"><a class="selflink" id="section-6.1.2.1" href="#section-6.1.2.1">6.1.2.1</a>.  BFD Modules Might Be Populated in schema-mounts</span>

   To support BFD technology, "ietf-bfd-ip-sh" and "ietf-bfd-ip-mh" YANG
   modules might be populated in the "schema-mounts" container:

      <schema-mounts
          xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount">
        <mount-point>
          <module> ietf-connectionless-oam </module>
          <name>root</name>
          <use-schema>
            <name>root</name>
          </use-schema>
        </mount-point>
        <schema>
          <name>root</name>
          <module>
            <name>ietf-bfd-ip-sh </name>
            <revision>2016-07-04</revision>
            <namespace>
              urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh
            </namespace>
            <conformance-type>implement</conformance-type>
          </module>
          <module>
            <name>ietf-bfd-ip-mh</name>
            <revision> 2016-07-04</revision>
            <namespace>
              urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh
            </namespace>
            <conformance-type>implement</conformance-type>
          </module>
        </schema>
      </schema-mounts>






<span class="grey">Kumar, et al.                Standards Track                   [Page 48]</span>

<span id="page-49" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   and the "ietf-connectionless-oam" module might have:

   <ietf-connectionless-oam
   uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam">
      ......
    <test-point-locations>
     <ipv4-location>192.0.2.1</ipv4-location>
      ......
     <root>
      <ietf-bfd-ip-sh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh">
       <ip-sh>
        foo
        ......
       </ip-sh>
      </ietf-bfd-ip-sh>
      <ietf-bfd-ip-mh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh">
       <ip-mh>
        foo
        ......
       </ip-mh>
      </ietf-bfd-ip-mh>
     </root>
    </test-point-locations>
   </ietf-connectionless-oam>

<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>.  LSP Ping Extension</span>

<span class="h4"><a class="selflink" id="section-6.2.1" href="#section-6.2.1">6.2.1</a>.  Augment Method</span>

   The following sections show how the "ietf-connectionless-oam" module
   can be extended to support LSP ping technology.  For this purpose, a
   set of extensions are introduced such as the "technology-type"
   extension and the test-point "attributes" extension.

   Note that an LSP Ping YANG data model is being specified
   [<a href="#ref-LSP-PING-YANG">LSP-PING-YANG</a>].  As with BFD, users can choose to use the
   "ietf-connectionless-oam" as the basis and augment the
   "ietf-connectionless-oam" model with details specific to LSP Ping in
   the model extension to provide a unified view across different
   technologies.  The details that are specific to LSP Ping can be the
   grouping defined in the LSP ping model to avoid duplication of
   effort.

<span class="h5"><a class="selflink" id="section-6.2.1.1" href="#section-6.2.1.1">6.2.1.1</a>.  Technology-Type Extension</span>

   No LSP Ping technology type has been defined in the
   "ietf-connectionless-oam" module.  Therefore, a technology-type
   extension is required in the module extension.



<span class="grey">Kumar, et al.                Standards Track                   [Page 49]</span>

<span id="page-50" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   The snippet below depicts an example of augmenting
   "ietf-connectionless-oam" with "lsp-ping" type:

   augment "/nd:networks/nd:network/nd:node/"
   +"coam:location-type/coam:ipv4-location-type"
   +"/coam:test-point-ipv4-location-list/"
           +"coam:test-point-locations/coam:technology"
   {
      leaf lsp-ping{
      type string;
     }
   }

<span class="h5"><a class="selflink" id="section-6.2.1.2" href="#section-6.2.1.2">6.2.1.2</a>.  Test Point Attributes Extension</span>

   To support LSP Ping, the "ietf-connectionless-oam" module can be
   extended and parameters specific to LSP Ping can be defined and put
   on the "test-point-locations" list.

   Users can reuse the attributes or groupings that are defined in
   [<a href="#ref-LSP-PING-YANG">LSP-PING-YANG</a>] as follows:

   The snippet below depicts an example of augmenting the "test-point-
   locations" list with LSP Ping attributes:

   augment "/nd:networks/nd:network/nd:node/"
   +"coam:location-type/coam:ipv4-location-type"
   +"/coam:test-point-ipv4-location-list/"
           +"coam:test-point-locations"
   {
   list lsp-ping {
            key "lsp-ping-name";
            leaf lsp-ping-name {
             type string {
               length "1..31";
            }
           mandatory "true";
           description "LSP Ping test name.";
           ......
         }

<span class="h4"><a class="selflink" id="section-6.2.2" href="#section-6.2.2">6.2.2</a>.  Schema Mount</span>

   An alternative method is using the schema mount mechanism [<a href="./rfc8528" title=""YANG Schema Mount"">RFC8528</a>]
   in the "ietf-connectionless-oam" module.  Within the "test-point-
   locations" list, a "root" attribute is defined to provide a mounted
   point for models mounted per "test-point-locations".  Therefore, the
   "ietf-connectionless-oam" model can provide a place in the node



<span class="grey">Kumar, et al.                Standards Track                   [Page 50]</span>

<span id="page-51" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   hierarchy where other OAM YANG data models can be attached, without
   any special extension in the "ietf-connectionless-oam" YANG data
   module [<a href="./rfc8528" title=""YANG Schema Mount"">RFC8528</a>].  Note that the limitation of the schema mount
   method is that it's not allowed to specify certain modules that are
   required to be mounted under a mount point.

   The snippet below depicts the definition of "root" attribute.

         anydata root {
          yangmnt:mount-point root;
          description
         "Root for models supported per test point";
         }

   The following section shows how the "ietf-connectionless-oam" module
   can use schema mount to support LSP Ping technology.

<span class="h5"><a class="selflink" id="section-6.2.2.1" href="#section-6.2.2.1">6.2.2.1</a>.  LSP Ping Modules Might Be Populated in schema-mounts</span>

   To support LSP Ping technology, the "ietf-lsp-ping" YANG module
   [<a href="#ref-LSP-PING-YANG">LSP-PING-YANG</a>] might be populated in the "schema-mounts" container:

      <schema-mounts
          xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount">
        <mount-point>
          <module> ietf-connectionless-oam </module>
          <name>root</name>
          <use-schema>
            <name>root</name>
          </use-schema>
        </mount-point>
        <schema>
          <name>root</name>
          <module>
            <name>ietf-lsp-ping </name>
            <revision>2016-03-18</revision>
            <namespace>
              urn:ietf:params:xml:ns:yang: ietf-lsp-ping
            </namespace>
            <conformance-type>implement</conformance-type>
          </module>
        </schema>
      </schema-mounts>








<span class="grey">Kumar, et al.                Standards Track                   [Page 51]</span>

<span id="page-52" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   and the "ietf-connectionless-oam" module might have:

   <ietf-connectionless-oam
   uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam">
      ......
    <test-point-locations>
     <ipv4-location> 192.0.2.1</ipv4-location>
      ......
     <root>
      <ietf-lsp-ping uri="urn:ietf:params:xml:ns:yang:ietf-lsp-ping">
       <lsp-pings>
        foo
        ......
       </lsp-pings>
      </ietf-lsp-ping>
     </root>
    </test-point-locations>
   </ietf-connectionless-oam>

<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Security Considerations</span>

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [<a href="./rfc6241" title=""Network Configuration Protocol (NETCONF)"">RFC6241</a>] or RESTCONF [<a href="./rfc8040" title=""RESTCONF Protocol"">RFC8040</a>].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [<a href="./rfc6242" title=""Using the NETCONF Protocol over Secure Shell (SSH)"">RFC6242</a>].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [<a href="./rfc8446" title=""The Transport Layer Security (TLS) Protocol Version 1.3"">RFC8446</a>].

   The NETCONF Configuration Access Control Model (NACM) [<a href="./rfc8341" title=""Network Configuration Access Control Model"">RFC8341</a>]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive in some
   network environments.  Write operations (e.g., edit-config) to these
   data nodes without proper protection can have a negative effect on
   network operations.  These are the subtrees and data nodes and their
   sensitivity/vulnerability:

      /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv4-
      location-type/cl-oam:test-point-ipv4-location-list/cl-oam:test-
      point-locations/






<span class="grey">Kumar, et al.                Standards Track                   [Page 52]</span>

<span id="page-53" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv6-
      location-type/cl-oam:test-point-ipv6-location-list/cl-oam:test-
      point-locations/

      /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:mac-
      location-type/cl-oam:test-point-mac-address-location-list/cl-
      oam:test-point-locations/

      /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group-
      as-number-location-type/cl-oam:test-point-as-number-location-list/
      cl-oam:test-point-locations/

      /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group-
      router-id-location-type/cl-oam:test-point-system-info-location-
      list/cl-oam:test-point-locations/

   Unauthorized access to any of these lists can adversely affect OAM
   management system handling of end-to-end OAM and coordination of OAM
   within underlying network layers.  This may lead to inconsistent
   configuration, reporting, and presentation for the OAM mechanisms
   used to manage the network.

   Some of the readable data nodes in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control read access (e.g., via get, get-config, or
   notification) to these data nodes.  These are the subtrees and data
   nodes and their sensitivity/vulnerability:

      /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-count/

      /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count/

      /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/

      /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down-
      count/

      /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-count/

      /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count//





<span class="grey">Kumar, et al.                Standards Track                   [Page 53]</span>

<span id="page-54" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


      /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/

      /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions-
      statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down-
      count/

<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  IANA Considerations</span>

   This document registers URIs in the "IETF XML Registry" [<a href="./rfc3688" title=""The IETF XML Registry"">RFC3688</a>].
   Following the format in [<a href="./rfc3688" title=""The IETF XML Registry"">RFC3688</a>], the following registrations have
   been made.

      URI: urn:ietf:params:xml:ns:yang:ietf-lime-time-types
      Registrant Contact: The IESG.
      XML: N/A; the requested URI is an XML namespace.

      URI: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam
      Registrant Contact: The IESG.
      XML: N/A; the requested URI is an XML namespace.

   This document registers two YANG modules in the "YANG Module Names"
   registry [<a href="./rfc6020" title=""YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)"">RFC6020</a>].

      Name: ietf-lime-time-types
      Namespace: urn:ietf:params:xml:ns:yang:ietf-lime-time-types
      Prefix: lime
      Reference: <a href="./rfc8532">RFC 8532</a>

      Name: ietf-connectionless-oam
      Namespace: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam
      Prefix: cl-oam
      Reference: <a href="./rfc8532">RFC 8532</a>

<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  References</span>

<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>.  Normative References</span>

   [<a id="ref-RFC792">RFC792</a>]   Postel, J., "Internet Control Message Protocol", <a href="./rfc792">RFC 792</a>,
              September 1981.

   [<a id="ref-RFC1831">RFC1831</a>]  Srinivasan, R., "RPC: Remote Procedure Call Protocol
              Specification Version 2", <a href="./rfc1831">RFC 1831</a>, DOI 10.17487/RFC1831,
              August 1995, <<a href="https://www.rfc-editor.org/info/rfc1831">https://www.rfc-editor.org/info/rfc1831</a>>.

   [<a id="ref-RFC3688">RFC3688</a>]  Mealling, M., "The IETF XML Registry", <a href="https://www.rfc-editor.org/bcp/bcp81">BCP 81</a>, <a href="./rfc3688">RFC 3688</a>,
              DOI 10.17487/RFC3688, January 2004,
              <<a href="https://www.rfc-editor.org/info/rfc3688">https://www.rfc-editor.org/info/rfc3688</a>>.



<span class="grey">Kumar, et al.                Standards Track                   [Page 54]</span>

<span id="page-55" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   [<a id="ref-RFC4382">RFC4382</a>]  Nadeau, T., Ed. and H. van der Linde, Ed., "MPLS/BGP Layer
              3 Virtual Private Network (VPN) Management Information
              Base", <a href="./rfc4382">RFC 4382</a>, DOI 10.17487/RFC4382, February 2006,
              <<a href="https://www.rfc-editor.org/info/rfc4382">https://www.rfc-editor.org/info/rfc4382</a>>.

   [<a id="ref-RFC4443">RFC4443</a>]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
              Control Message Protocol (ICMPv6) for the Internet
              Protocol Version 6 (IPv6) Specification", STD 89,
              <a href="./rfc4443">RFC 4443</a>, DOI 10.17487/RFC4443, March 2006,
              <<a href="https://www.rfc-editor.org/info/rfc4443">https://www.rfc-editor.org/info/rfc4443</a>>.

   [<a id="ref-RFC4656">RFC4656</a>]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and
              M. Zekauskas, "A One-way Active Measurement Protocol
              (OWAMP)", <a href="./rfc4656">RFC 4656</a>, DOI 10.17487/RFC4656, September 2006,
              <<a href="https://www.rfc-editor.org/info/rfc4656">https://www.rfc-editor.org/info/rfc4656</a>>.

   [<a id="ref-RFC5357">RFC5357</a>]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and
              J. Babiarz, "A Two-Way Active Measurement Protocol
              (TWAMP)", <a href="./rfc5357">RFC 5357</a>, DOI 10.17487/RFC5357, October 2008,
              <<a href="https://www.rfc-editor.org/info/rfc5357">https://www.rfc-editor.org/info/rfc5357</a>>.

   [<a id="ref-RFC5880">RFC5880</a>]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", <a href="./rfc5880">RFC 5880</a>, DOI 10.17487/RFC5880, June 2010,
              <<a href="https://www.rfc-editor.org/info/rfc5880">https://www.rfc-editor.org/info/rfc5880</a>>.

   [<a id="ref-RFC5905">RFC5905</a>]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", <a href="./rfc5905">RFC 5905</a>, DOI 10.17487/RFC5905, June 2010,
              <<a href="https://www.rfc-editor.org/info/rfc5905">https://www.rfc-editor.org/info/rfc5905</a>>.

   [<a id="ref-RFC6241">RFC6241</a>]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", <a href="./rfc6241">RFC 6241</a>, DOI 10.17487/RFC6241, June 2011,
              <<a href="https://www.rfc-editor.org/info/rfc6241">https://www.rfc-editor.org/info/rfc6241</a>>.

   [<a id="ref-RFC6242">RFC6242</a>]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", <a href="./rfc6242">RFC 6242</a>, DOI 10.17487/RFC6242, June 2011,
              <<a href="https://www.rfc-editor.org/info/rfc6242">https://www.rfc-editor.org/info/rfc6242</a>>.

   [<a id="ref-RFC6991">RFC6991</a>]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              <a href="./rfc6991">RFC 6991</a>, DOI 10.17487/RFC6991, July 2013,
              <<a href="https://www.rfc-editor.org/info/rfc6991">https://www.rfc-editor.org/info/rfc6991</a>>.

   [<a id="ref-RFC7950">RFC7950</a>]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              <a href="./rfc7950">RFC 7950</a>, DOI 10.17487/RFC7950, August 2016,
              <<a href="https://www.rfc-editor.org/info/rfc7950">https://www.rfc-editor.org/info/rfc7950</a>>.





<span class="grey">Kumar, et al.                Standards Track                   [Page 55]</span>

<span id="page-56" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   [<a id="ref-RFC8029">RFC8029</a>]  Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
              Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
              Switched (MPLS) Data-Plane Failures", <a href="./rfc8029">RFC 8029</a>,
              DOI 10.17487/RFC8029, March 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8029">https://www.rfc-editor.org/info/rfc8029</a>>.

   [<a id="ref-RFC8040">RFC8040</a>]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", <a href="./rfc8040">RFC 8040</a>, DOI 10.17487/RFC8040, January 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8040">https://www.rfc-editor.org/info/rfc8040</a>>.

   [<a id="ref-RFC8294">RFC8294</a>]  Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
              "Common YANG Data Types for the Routing Area", <a href="./rfc8294">RFC 8294</a>,
              DOI 10.17487/RFC8294, December 2017,
              <<a href="https://www.rfc-editor.org/info/rfc8294">https://www.rfc-editor.org/info/rfc8294</a>>.

   [<a id="ref-RFC8341">RFC8341</a>]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, <a href="./rfc8341">RFC 8341</a>,
              DOI 10.17487/RFC8341, March 2018,
              <<a href="https://www.rfc-editor.org/info/rfc8341">https://www.rfc-editor.org/info/rfc8341</a>>.

   [<a id="ref-RFC8343">RFC8343</a>]  Bjorklund, M., "A YANG Data Model for Interface
              Management", <a href="./rfc8343">RFC 8343</a>, DOI 10.17487/RFC8343, March 2018,
              <<a href="https://www.rfc-editor.org/info/rfc8343">https://www.rfc-editor.org/info/rfc8343</a>>.

   [<a id="ref-RFC8345">RFC8345</a>]  Clemm, A., Medved, J., Varga, R., Bahadur, N.,
              Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
              Network Topologies", <a href="./rfc8345">RFC 8345</a>, DOI 10.17487/RFC8345, March
              2018, <<a href="https://www.rfc-editor.org/info/rfc8345">https://www.rfc-editor.org/info/rfc8345</a>>.

   [<a id="ref-RFC8446">RFC8446</a>]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", <a href="./rfc8446">RFC 8446</a>, DOI 10.17487/RFC8446, August 2018,
              <<a href="https://www.rfc-editor.org/info/rfc8446">https://www.rfc-editor.org/info/rfc8446</a>>.

   [<a id="ref-RFC8529">RFC8529</a>]  Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and
              X. Liu, "YANG Model for Network Instances", <a href="./rfc8529">RFC 8529</a>,
              DOI 10.17487/RFC8529, March 2019,
              <<a href="https://www.rfc-editor.org/info/rfc8529">https://www.rfc-editor.org/info/rfc8529</a>>.

<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>.  Informative References</span>

   [<a id="ref-BFD-YANG">BFD-YANG</a>] Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and
              G. Mirsky, "YANG Data Model for Bidirectional Forwarding
              Detection (BFD)", Work in Progress, <a href="./draft-ietf-bfd-yang-17">draft-ietf-bfd-yang-</a>
              <a href="./draft-ietf-bfd-yang-17">17</a>, August 2018.

   [<a id="ref-G.800">G.800</a>]    "Unified functional architecture of transport networks",
              ITU-T Recommendation G.800, 2016.




<span class="grey">Kumar, et al.                Standards Track                   [Page 56]</span>

<span id="page-57" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   [<a id="ref-G.8013">G.8013</a>]   "OAM functions and mechanisms for Ethernet based
              networks", ITU-T Recommendation G.8013/Y.1731, 2013.

   [<a id="ref-IEEE.1588v1">IEEE.1588v1</a>]
              "IEEE Standard for a Precision Clock Synchronization
              Protocol for Networked Measurement and Control Systems
              Version 1", IEEE Std 1588, 2002.

   [<a id="ref-IEEE.1588v2">IEEE.1588v2</a>]
              "IEEE Standard for a Precision Clock Synchronization
              Protocol for Networked Measurement and Control Systems
              Version 2", IEEE Std 1588, 2008.

   [<a id="ref-LSP-PING-YANG">LSP-PING-YANG</a>]
              Zheng, L., Zheng, G., Mirsky, G., Rahman, R., and F.
              Iqbal, "YANG Data Model for LSP-Ping", Work in Progress,
              <a href="./draft-zheng-mpls-lsp-ping-yang-cfg-10">draft-zheng-mpls-lsp-ping-yang-cfg-10</a>, January 2019.

   [<a id="ref-RFC5462">RFC5462</a>]  Andersson, L. and R. Asati, "Multiprotocol Label Switching
              (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
              Class" Field", <a href="./rfc5462">RFC 5462</a>, DOI 10.17487/RFC5462, February
              2009, <<a href="https://www.rfc-editor.org/info/rfc5462">https://www.rfc-editor.org/info/rfc5462</a>>.

   [<a id="ref-RFC6020">RFC6020</a>]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", <a href="./rfc6020">RFC 6020</a>,
              DOI 10.17487/RFC6020, October 2010,
              <<a href="https://www.rfc-editor.org/info/rfc6020">https://www.rfc-editor.org/info/rfc6020</a>>.

   [<a id="ref-RFC6136">RFC6136</a>]  Sajassi, A., Ed. and D. Mohan, Ed., "Layer 2 Virtual
              Private Network (L2VPN) Operations, Administration, and
              Maintenance (OAM) Requirements and Framework", <a href="./rfc6136">RFC 6136</a>,
              DOI 10.17487/RFC6136, March 2011,
              <<a href="https://www.rfc-editor.org/info/rfc6136">https://www.rfc-editor.org/info/rfc6136</a>>.

   [<a id="ref-RFC7276">RFC7276</a>]  Mizrahi, T., Sprecher, N., Bellagamba, E., and
              Y. Weingarten, "An Overview of Operations, Administration,
              and Maintenance (OAM) Tools", <a href="./rfc7276">RFC 7276</a>,
              DOI 10.17487/RFC7276, June 2014,
              <<a href="https://www.rfc-editor.org/info/rfc7276">https://www.rfc-editor.org/info/rfc7276</a>>.

   [<a id="ref-RFC8340">RFC8340</a>]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              <a href="https://www.rfc-editor.org/bcp/bcp215">BCP 215</a>, <a href="./rfc8340">RFC 8340</a>, DOI 10.17487/RFC8340, March 2018,
              <<a href="https://www.rfc-editor.org/info/rfc8340">https://www.rfc-editor.org/info/rfc8340</a>>.

   [<a id="ref-RFC8528">RFC8528</a>]  Bjorklund, M. and L. Lhotka, "YANG Schema Mount",
              <a href="./rfc8528">RFC 8528</a>, DOI 10.17487/RFC8528, March 2019,
              <<a href="https://www.rfc-editor.org/info/rfc8528">https://www.rfc-editor.org/info/rfc8528</a>>.




<span class="grey">Kumar, et al.                Standards Track                   [Page 57]</span>

<span id="page-58" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


   [<a id="ref-RFC8531">RFC8531</a>]  Kumar, D., Wu, Q., and M. Wang, "Generic YANG Data Model
              for Connection-Oriented Operations, Administration, and
              Maintenance (OAM) Protocols", <a href="./rfc8531">RFC 8531</a>,
              DOI 10.17487/RFC8531, April 2019,
              <<a href="https://www.rfc-editor.org/info/rfc8531">https://www.rfc-editor.org/info/rfc8531</a>>.

   [<a id="ref-RFC8533">RFC8533</a>]  Kumar, D., Wang, M., Wu, Q., Ed., Rahman, R., and
              S. Raghavan, " A YANG Data Model for Retrieval Methods for
              the Management of Operations, Administration, and
              Maintenance (OAM) Protocols That Use Connectionless
              Communications", <a href="./rfc8533">RFC 8533</a>, DOI 10.17487/RFC8533, April
              2019.

Acknowledgments

   The authors of this document would like to thank Elwyn Davies, Alia
   Atlas, Brian E. Carpenter, Greg Mirsky, Adam Roach, Alissa Cooper,
   Eric Rescorla, Ben Campbell, Benoit Claise, Kathleen Moriarty, Carlos
   Pignataro, and others for their substantive review and comments, and
   proposals to stabilize and improve the document.































<span class="grey">Kumar, et al.                Standards Track                   [Page 58]</span>

<span id="page-59" ></span>
<span class="grey"><a href="./rfc8532">RFC 8532</a>           Connectionless OAM YANG Data Model         April 2019</span>


Authors' Addresses

   Deepak Kumar
   CISCO Systems
   510 McCarthy Blvd
   Milpitas, CA  95035
   United States of America

   Email: [email protected]


   Michael Wang
   Huawei Technologies, Co., Ltd
   101 Software Avenue, Yuhua District
   Nanjing  210012
   China

   Email: [email protected]


   Qin Wu (editor)
   Huawei
   101 Software Avenue, Yuhua District
   Nanjing, Jiangsu  210012
   China

   Email: [email protected]


   Reshad Rahman
   Cisco Systems
   2000 Innovation Drive
   Kanata, Ontario  K2K 3E8
   Canada

   Email: [email protected]


   Srihari Raghavan
   Cisco Systems
   Tril Infopark Sez, Ramanujan IT City
   Neville Block, 2nd floor, Old Mahabalipuram Road
   Chennai, Tamil Nadu  600113
   India

   Email: [email protected]





Kumar, et al.                Standards Track                   [Page 59]

Additional Resources